Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FFPUBGAOVCFLOL
Xem chi tiết
Nhật Hạ
24 tháng 2 2020 lúc 17:52

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: 

​+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)

+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)

+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)

Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)

Khách vãng lai đã xóa
Phạm Ngọc Tuyết
Xem chi tiết
Vũ Ngọc Mai
Xem chi tiết
Dang Tran Tay Thi
11 tháng 3 2016 lúc 8:45

Xin lỗi! Mình mới học lớp 5 thôi à!

Trương Quang Thiên
Xem chi tiết
Trần Lê Thiên Vương
26 tháng 5 2017 lúc 20:36

(X+1)6 + (y-1)4 = - Z2 suy ra  (X+1)6= 0, (y-1)4=0, -Z2=0

X=-1, Y=1, z=0. Thay x, y, z vào biểu thức P ta được: P= 2017

Nguyễn Thùy Chi
Xem chi tiết
 Mashiro Shiina
7 tháng 3 2020 lúc 13:34

Hỏi đáp Toán

Khách vãng lai đã xóa
Vũ Trọng Nhật
Xem chi tiết
Doan Minh Quân
Xem chi tiết
Đinh quang hiệp
21 tháng 5 2018 lúc 7:27

nhầm xíu nhá mk lm lại :

\(A=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)\(=\frac{xz}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

Đinh quang hiệp
21 tháng 5 2018 lúc 7:22

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}=\frac{xy}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xy+1+z}{xz+z+1}=1\)

vậy A=1

CauBeNguNgo Official
28 tháng 3 2019 lúc 21:23

\(\text{Ta có :}\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xyz+xy+x}+\frac{xyz}{x^2yz+xyz+xy}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+x+1}\left(\text{Vì }xyz=1\right)\)

\(=\frac{x+xy+1}{xy+x+1}\)

\(=1\)

Lê Hoàng Phúc
Xem chi tiết
halinh
Xem chi tiết
halinh
8 tháng 7 2016 lúc 21:15
(x+z-x)/x = (z+x-y)/y = (x+y-z)/z
Hoàng Phúc
8 tháng 7 2016 lúc 21:18

sao lại không thỏa mãn điều kiện hả bn??

Hoàng Lê Bảo Ngọc
8 tháng 7 2016 lúc 22:06

Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

GIẢI : 

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)

Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)