1/2+1/4+1/8....1/128+1/256
1/2 + 1/4 + 1/8 ........ 1/128 + 1/256
Giúp mik
Đặt tổng là A
\(2xA=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{64}+\dfrac{1}{128}\)
\(\Rightarrow A=2xA-A=1-\dfrac{1}{256}=\dfrac{255}{256}\)
1/2+1/4+1/8+1/16...+1/128+1/256=
E = 1/2 + 1/4 + 1/8 + 1/16 + ...... + 1/128 + 1/256
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^2}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{1}{2^7}\)
E= 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256
2E = 2 ( 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256 )
= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> E = 2E - E
= (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 )
= 1 - 1/256
= 255/256
k nhá, thanks
\(E=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(E=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(E=1-\frac{1}{2^8}\)
\(E=1-\frac{1}{256}\)
\(E=\frac{255}{256}\)
S=1/2+1/4+1/8+1/16+...+1/128+1/256 = ?
S= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2S= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>S = 2S-S =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
255/256
ht
và
NHỚ K CHO MIK NHA!!!!!!!!!!!!!!!!!
Tính:
A= 1/2+1/4+1/8+1/16+1/64+1/128+1/256
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\) + \(\dfrac{1}{256}\)
2A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2A - A = 1 - \(\dfrac{1}{256}\)
A = \(\dfrac{255}{256}\)
tính :
1 / 2 + 1 / 4 + 1 / 8 + ..... + 1 / 128 + 1 / 256
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(Ax2=2x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\right)\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{128}-\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
tính :
1 / 2 + 1 / 4 + 1 / 8 + ..... + 1 / 128 + 1 / 256
e =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
\(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(2\times E=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\)
\(2\times E-E=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{256}\right)\)
\(E=1-\dfrac{1}{256}\)
\(E=\dfrac{256}{256}-\dfrac{1}{256}\)
\(E=\dfrac{255}{256}\)
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
Tính \(S=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
Dùng sai phân như sau
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)=1-\frac{1}{256}\)
Vậy \(S=1-\frac{1}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(=\frac{128+64+32+16+8+4+2+1}{256}\)
\(=\frac{255}{256}\)
#Hok tốt