\(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}=?\)
Tính:
a) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
b) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
Ai nhanh mình tick cho
a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)
b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(=\frac{15}{16}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!1111
\(a)\) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
\(A=3\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.50}\right)\)
\(2A=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.50}\right)\)
\(2A-A=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=3\left(\frac{1}{3}-\frac{1}{50}\right)\)
\(A=1-\frac{3}{50}\)
\(A=\frac{47}{50}\)
Vậy \(A=\frac{47}{50}\)
\(b)\) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(B=1-\frac{1}{16}\)
\(B=\frac{15}{16}\)
Vậy \(B=\frac{15}{16}\)
Chúc bạn học tốt ~
Tính B=\(\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+.....+\frac{49.51}{99.101}\)
tính nhanh
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)
\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(2A=3\left(1-\frac{1}{51}\right)\)
\(2A=3.\frac{50}{51}\)
\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..........+\frac{1}{49.51}=?\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}\)
=3(1/1.3+1/3.5+1/5.7+1/7.9)
=3/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) vi khoang cach tu 1-3;3-5;5-7;7-9 la 2 nen ta nhan tat ca voi 1/2 ma 3.1/2=3/2
=3/2.(1-1/9) rut gon -1/3+1/3;-1/5+1/5;-1/7+1/7=0
=3/2.8/9=4/3
ta có :3/(1.3)+3/(3.5)+3/(5.7)+3/(7.9)
ta đặt 3 làm chung rồi tự làm đc
\(B=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+......+\frac{2^3}{101.103}\)
\(B=\frac{2^3}{3.5}+\frac{2^3}{5.7}+....+\frac{2^3}{101.103}\)
\(\Rightarrow\frac{1}{2^2}.B=\frac{2}{3.5}+\frac{2}{4.7}+....+\frac{2}{101.103}\)
\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\)
\(\Rightarrow\frac{1}{4}.B=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)
\(\Rightarrow B=\frac{100}{309}:\frac{1}{4}=\frac{400}{309}\)
\(=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(=4\cdot\frac{100}{309}=\frac{400}{309}\)
tính A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+........+\frac{3}{49.51}\)
mọi người giúp mình với nhá, càng nhanh càng tốt
A=3/1.3+3/3.5+3/5.7+............+3/49.51
A=3/1-3/3=3/3-3/5+3/5-3/7+...............+3/49-3/51
A=1-1/3+1/3-1/5+1/5-1/7+.....................+1/39-1/51
A=1-1/51
A=50/51
A\(=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{49.51}\right) \)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\frac{2}{49.51}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
ko tin cu an thu nguyen cai cum dau vao may tinh cer :v
tính tổng A=\(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+ \(\frac{3}{5.7}\)+........+\(\frac{3}{49.51}\)
ta có A=3/1*3+3/3*5+3/5*7+...+3/49*51
=> A=3*1/2*(2/1*3+2/3*5+..+2/49*51)
=> A=3/2*(1-1/3+1/3-1/5+..+1/49-1/51)
=> A=3/2*(1-1/51)
=> A= 3/2* 50/51
=> A= 25/17
tính Q=\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\). kết quả là Q =
\(Q=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)
\(=\frac{1}{3}-\frac{1}{49}\)
\(=\frac{46}{147}\)
Vậy \(Q=\frac{46}{147}\)
Ta có : \(\frac{2}{3}Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{47.49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{49}=\frac{49}{147}-\frac{3}{147}=\frac{46}{147}\)
\(\Rightarrow Q=\frac{46}{147}\div\frac{2}{3}=\frac{138}{294}=\frac{23}{49}\)
Vậy ...