Tính nhanh các tổng sau:1+3+5+7+.....(dãy có 50 số hạng)
Tính nhanh các tổng sau
1, 1 + 3 + 5 + 7 ... ( dãy có 50 số hạng )
so cuoi la bao nhieu vay
Tổng = 50x51/2 = 1275
Tính nhanh dãy số sau :
1 + 3 + 5 + 7 + ... ( dãy có 50 số hạng )
P/s : nhanh có tick
Số cuối của dãy là:
( 50 -1 ) x 2 + 1 = 99
Tổng số hạng của dãy là :
( 99 + 1 ) x 50 : 2 = 2500
Đ/ S:.................
Số hạng thứ 50 là:
(50-1)*2+1=99
Dãy trên có số số hạng là:
(99-1)/2+1=50(số hạng)
Ta có:
1+3+5+7+...+99
=(1+99)*50/2
=100*50/2
=2500
Học tốt
- Gọi số hạng cuối của dãy là x
- Gọi S = 1 + 3 + 5 + ... + x . Ta có :
\(\left(x-1\right):2+1=50\)
\(\Leftrightarrow x=\left(50-1\right).2+1\)
\(\Rightarrow x=99\)
\(\Leftrightarrow S=\left(99+1\right).50:2\)
\(=2500\)
Cho dãy số : 1 x 3 , 3 x 5 , 5 x 7 , 7x 9 , ....
a ) Tìm số hạng thứ 50 của dãy
b) Tính tổng của 50 số hạng đầu của dãy
Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp xét dãy số phụ như sau:
Giải:
a; Cho dãy số: 1 x 3 ; 3 x 5; 5 x 7 ; 7 x 9; ...
Tìm số thứ 50 của dãy số trên
Xét dãy số: 1; 3; 5; 7;...;
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số thứ 50 của dãy số trên là: 2 x (50 - 1) + 1 = 99
Vậy thừa số thứ nhất của số hạng thứ 50 của tổng A là: 99
Thừa số thứ hai của số hạng thứ 50 của tổng A là: 99 + 2 = 101
Từ những lập luận trên ta có:
Số hạng thứ 50 của dãy số 1 x 3 ; 3 x 5; 5 x 7 ;... là: 99 x 101
b; tính tổng của B = 1 x 3 + 3 x 5 + 5 x 7 + ...+ 99 x 101
B = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + ...+ 99 x 101
6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ...+ 99 x 101 x 6
6B = 1 x 3 x (5 + 1) + 3x5x(7 - 1) +5x7x(9-3)+...+99x101x(103-97)
6B = 1.3.5+1.3.1+3.5.7-1.3.5 + 5.7.9-3.5.7+...+99.101103 - 97.99.101
6B = 1.3.1 + 99.101.103
6B = 3 +9999.103
6B = 3 +1029897
6B = 1029900
B = 1029900 : 6
B = 171650
Cho dãy số : 1 , 3 , 5 , 7 , .....................................
((Tính tổng 50 số hạng đầu tiên của dãy ))
Tính số hạng thứ 50 của các dãy sau :
a) 1 ; 6 ; 2 ; 7 ; 3 ; 8 ;...
b) 1 ; 4 ; 4 ; 7 ; 7 ; 10 ;...
Nhanh + đúng = 3 tik
a. Mỗi cặp số của dãy là hai số hơn kém nhau 5 đơn vị.
Số hạng thứ 50 là số thứ hai của cặp thứ 25, đó là cặp (25,30).
Vậy số hạng thứ 50 là 30.
b. Tương tự, số hạng thứ 50 là số thứ hai của cặp thứ 25.
có thể tính số đó bằng cách: 4+3.24 = 76.
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp.
2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó.
3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng.
4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. 55= 1+2+3+...+9+10
2. 1,2,3,...30,31
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp. 2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó. 3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng. 4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Cho dãy số : 1 x 3 , 3 x 5 , 5 x 7 , 7x 9 , ....
a ) Tìm số hạng thứ 50 của dãy
b) Tính tổng của 50 số hạng đầu của dãy
Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp xét dãy số phụ như sau:
Giải:
a; Cho dãy số: 1 x 3 ; 3 x 5; 5 x 7 ; 7 x 9; ...
Tìm số thứ 50 của dãy số trên
Xét dãy số: 1; 3; 5; 7;...;
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số thứ 50 của dãy số trên là: 2 x (50 - 1) + 1 = 99
Vậy thừa số thứ nhất của số hạng thứ 50 của tổng A là: 99
Thừa số thứ hai của số hạng thứ 50 của tổng A là: 99 + 2 = 101
Từ những lập luận trên ta có:
Số hạng thứ 50 của dãy số 1 x 3 ; 3 x 5; 5 x 7 ;... là: 99 x 101
b; tính tổng của B = 1 x 3 + 3 x 5 + 5 x 7 + ...+ 99 x 101
B = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + ...+ 99 x 101
6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ...+ 99 x 101 x 6
6B = 1 x 3 x (5 + 1) + 3x5x(7 - 1) +5x7x(9-3)+...+99x101x(103-97)
6B = 1.3.5+1.3.1+3.5.7-1.3.5 + 5.7.9-3.5.7+...+99.101103 - 97.99.101
6B = 1.3.1 + 99.101.103
6B = 3 +9999.103
6B = 3 +1029897
6B = 1029900
B = 1029900 : 6
B = 171650
Cho dãy số 11; 22; 33; ......; 1089; 1100
a) Dãy số này có bao nhiêu số hạng?
b) Số hạng thứ 50 của dãy là số nào?
c) Tính tổng của dãy số trên?
CÁC BẠN GIÚP MÌNH NHANH NHANH NHA THANKS
Số lượng số hạng của dãy số trên là :
(1100 - 11) : 11 + 1 = 100 (số)
Số hạng thứ 50 của dãy số là :
1100 : 2 = 550
Tổng của số hạng trên là :
(1100 + 11 ) : 2 x 100 = 55550
Đáp số : (Tự làm)
(Nếu sai thì mình xin lỗi)
a) Có số số hạng có 2 cs là
(99-11):11+1=9(số)
Có số số hạng có 3cs là
(99-11):11}+1=81(số)
có số số hạng có 4 cs là
(1100-1001):11+1=10(số)
Dãy số trên có tất cả số số hạng là
81+10+9=100(số hạng)
b) số hạng thứ 50 là
11+(50-1)x11=550
c) Số hạng thứ 100 là: (100-1)x11+11=1100
Tổng là: (1100+11)x100:2=55550
Mik ko chắc lắm nhưng chắc đúng r đấy