Chứng minh rằng nếu \(c^2+2\left(ab-ac-bc\right)=0\) với \(b\ne c\) và \(\left(a+b\right)\ne c\) thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
m.n giúp mk nha!!!
chứng minh rằng nếu \(c^2+2\left(ab-ac-bc\right)=0;b\ne c;a+b\ne c\) thì:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Do \(c^2+2\left(ab-ac-bc\right)=0\Leftrightarrow-c^2=2\left(ab-ac-bc\right)\)
Ta có; \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+c^2-c^2+\left(a-c\right)^2}{b^2+c^2-c^2+\left(b-c\right)^2}=\frac{a^2+c^2+2\left(ab-ac-bc\right)+\left(a-c\right)^2}{b^2+c^2+2\left(ab-ac-bc\right)+\left(b-c\right)^2}\)
\(=\frac{2\left(a-c\right)^2+2\left(ab-bc\right)}{2\left(b-c\right)^2+2\left(ab-ac\right)}=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}\)
\(=\frac{a-c}{b-c}\) (đpcm)
Chứng minh rằng nếu \(c^2+2.\left(ab-ac-bc\right)=0\)và \(b\ne c\), \(a+b\ne c\)thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
CMR nếu
\(c^2+2\left(ab-ac-bc\right)=0,b\ne c,a+b\ne c\) thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Vì \(c^2+2\left(ab-ac-bc\right)=0\) nên :
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+\left(a-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}{b^2+\left(b-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}\)
\(=\frac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}=\frac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\) \(\left(b\ne c,a+b\ne0\right)\)
Chứng minh rằng nếu: \(\frac{c^2}{2}=-ab+ac+bc\) với \(b\ne c\)và \(a+b\ne c\)thì
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)= \(\frac{a-c}{b-c}\)
Giups mk vs! Ai đug mk cho 3 t
Biết \(a\ne-b\); \(b\ne-c\); \(c\ne-a\) Chứng minh rằng : \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\)
Với điều kiện như đề bài
Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)
Tướng tự:
\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)
Em nhớ làm tiếp nhé!
Chứng minh rằng nếu:\(c^2+2\left(ab-ac-bc\right)=0\left(b\ne0;a+b\ne c\right)\)
thì:\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)
\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)
\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)
\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)
Cho x,y thỏa \(\hept{\begin{cases}b\ne c\\b\ne a+c\\c^2=2\left(bc+ab-ac\right)\end{cases}}\)Chứng minh rằng: \(\frac{a^2+\left(a+c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a+c}{b-c}\)
Cần lắm một lời giải...
Cho \(c^2+2\left(ab-ac-bc\right)=0;b\ne c;a+b\ne c\)thì
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
thế cuối cùng đề bài là gì'.'???????
Ta có: \(c^2+2\left(ab-ac-bc\right)=0\)
\(\Rightarrow c^2=-2\left(ab-ac-bc\right)\)
Thay vào
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+a^2-2ac-2\left(ab-ac-bc\right)}{b^2+b^2-2bc-2\left(ab-ac-bc\right)}=\frac{2a^2-2ab+2bc}{2b^2-2ab+2ac}=\frac{a^2-ab+bc}{b^2-ab+ac}\)
\(\frac{a-c}{b-c}=\frac{a^2-2ac-2\left(ab-ac-bc\right)}{b^2-2bc-2\left(ab-ac-bc\right)}=\frac{a^2-2ab+2bc}{b^2-2ab+2ac}\)
=> ...
1. Cho \(4a^2+b^2=5ab\) và 2a>b>0
Tính \(A=\frac{ab}{4a^2-b^2}\)
2.Cho \(2x^2+2y^2=5xy\)và x>y>0
Tính \(A=\frac{x+y}{x-y}\)
3.Cho \(a^3+b^3+c^3=3ab\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
4. Cho \(a+b+c=0\left(a,b,c\ne0\right)\)
Rút gọn: \(A=\frac{ab}{a^2+b^2-c}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
5.Cho \(a\ne b,b\ne c,c\ne a\)và ab+bc+ac =1
Tính \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
Lm đc càng nhiều càng tốt nha. Giúp mk vs nha!!