Chứng minh rằng nếu ( m + 4n ) chia hết cho 13 thì 10 m+n chia hết cho 13
Chứng minh rằng nếu ( m + 4n ) chia hết cho 13 thì 10 m+n chia hết cho 13
\(m+4n⋮13\Rightarrow3m+12n⋮13\)
Xét tổng: \(A=3m+12n+10m+n=13m+13n⋮13\)
Chứng minh theo chiều xuôi, ta có \(m+4n⋮13,10m+n⋮13\)
\(\Rightarrow A⋮13\)
Mà \(m+4n⋮13\Rightarrow3m+12n⋮13\)
\(\Rightarrow10m+n⋮13\)(đpcm)
[Chứng minh theo chiều ngược:
\(A⋮13\)
Mà \(10m+n⋮13\)
\(\Rightarrow3m+12n⋮13\)
\(\Rightarrow3\left(m+4n\right)⋮13\)
\(\Rightarrow m+4n⋮13\) (đpcm)]
Chứng minh rằng nếu ( m + 4n ) chia hết cho 13 thì 10 m+n chia hết cho 13
( m + 4n ) chia hết cho 13
=> 10 ( m + 4n ) chia hết cho 13
=> 10m + 40n chia hết cho 13 (1)
Do 39 chia hết cho 13 => 39 n chia hết cho 13 (2)
(1) - (2) = 10m + 40n- 39 n chia hết cho 13
=>10m + n chia hết cho 13
vì (m+4n) chia hết cho 13
suy ra 3(m+4n)=3m+12n chia hết cho 13
suy ra (3m+12n)+(10m+n)chia hết cho 13
vì 13m+13nchia hết cho 13 (giải thik trên)
mà 3(m+4n)chia hết cho 13 suy ra 10m+n chia hết cho 13
cho + k pn
Chứng minh rằng m+4n chia hết cho 13 khi và chỉ khi 10m+n chia hết cho 13 (với n,m thuộc N)
Lời giải:
Chiều xuôi:
$m+4n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow 13(m+n)-3(m+4n)\vdots 13$
$\Rightarrow 10m+n\vdots 13(1)$
----------------
Chiều ngược:
$10m+n\vdots 13$
$\Rightarrow 13(m+n)-(10m+n)\vdots 13$
$\Rightarrow 3m+12n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow m+4n\vdots 13$ (2)
Từ $(1); (2)\Rightarrow m+4n\vdots 13$ khi và chỉ khi $10m+n\vdots 13$
Chứng minh rằng: m + 4n chia hết cho 13 khi và chỉ khi 10m + n chia hết cho 13 ( với mọi m , n thuộc N )
m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13
CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):
A chia hết cho 13
Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
=> 10m + n chia hết cho 13
CM theo chiều ngược:
A chia hết cho 13
Mà 10m + n chia hết cho 13
=> 3m + 12n chia hết cho 13
=> 3(m + 4n) chia hết cho 13
Mà (3,13) = 1
=> m + 4n chia hết cho 13
Vậy:.
Ta có: 10m+n chia hết cho 13
=>10m chia hết cho 13
mà 10 không chia hết cho 13 nên m chia hết cho 13
=>n chia hết cho 13 nên 4n chia hết cho 13
=>m+4n chia hết cho 13
=>đpcm(ghi lại đề)
m+4n : 13
: la chia het ban nha
Biết m+ 4n chia hết cho 13 chứng tỏ rằng 10m + n chia hết cho 10 và ngược lại chia hểt cho 17
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Chứng minh rằng nếu số tự nhiên n chia hết cho 13 dư 7 thì \(n^2-10\)
chia hết cho 13
Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)
Khi đó :
\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)
\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)
Vậy \(n^2-10⋮13\left(đpcm\right)\)
Chúc bạn học tốt !!!
1.Cho a,b thuộc N
A) chứng minh rằng: Nếu (10.a+3.b) chia hết cho & thì (4.b-3.a) chia hết cho
B)chứng minh rằng: Nếu(2.a+3.b) chia hết cho 13 thì (9.a +7.b) chia hết cho 13
2.Chứng minh:
a)3366+7755-2 chia hết cho 5
b)8102-2102 chia hết cho 10
Nhanh giúp mình với nhé
chứng minh rằng :
m+4n chia hết cho 13 khi và chỉ khi 10m+n chia hết cho 13 với mọi m,n thuộc N.
ai giai dc mik tik cho dau tien. 5 lan nha
chia hết.chấm hếtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt