Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 10:25

a: Thay x=16 vào A, ta được:

\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

Usagi Tsukino
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 22:50

a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

b: P=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)

kietdeptrai
Xem chi tiết
NGUYỄN NGỌC DIỆU
Xem chi tiết
2611
18 tháng 4 2023 lúc 19:41

`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`

Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`

`b)` Với `x >= 0,x ne 4` có:

`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[\sqrt{x}-2]/[\sqrt{x}-3]`

`c)` Với `x >= 0,x ne 4` có:

`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`

Có: `C >= 1`

`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`

`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`

`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`

  Vì `x >= 0=>\sqrt{x} >= 0`

  `=>\sqrt{x}-3 > 0`

`<=>x > 9` (t/m đk)

Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 19:41

loading...  loading...  

Ngọc Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 19:02

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)

incon chan
Xem chi tiết
anh hoang
Xem chi tiết
Trần Khánh Chi
Xem chi tiết
Vương Nguyệt
15 tháng 10 2019 lúc 22:06

1. P = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)                       ĐKXĐ: \(x\ne-3\),  \(x\ne2\)

       = \(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

       = \(\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{x-2}\)

       = \(\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

       = \(\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

       = \(\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

       = \(\frac{x-4}{x-2}\)

2. P=\(\frac{-3}{4}\)

<=> \(\frac{x-4}{x-2}=\frac{-3}{4}\)

<=> 4 ( x - 4 ) = -3  ( x - 2 )

<=> 4x - 16 = -3x + 6

<=> 7x = 2 

<=> x = \(\frac{22}{7}\)

3. \(x^2-9=0\)

<=> ( x -3 ) ( x + 3 ) = 0

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)

-> P = \(\frac{3-4}{3-2}\) = -1

Linh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 20:51

a: Thay x=5 vào B, ta được:

\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)

b:  \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)