Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Usagi Tsukino

A=(2√x)/(√x+3) và B=(√x+1)/(√x-3)-(7√x+3)/(9-x) (với x≥0;x≠9)
a)Tính giá trị biểu thức A khi x=16
b)Rút gọn biểu thức P=A+B

 

Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 22:50

a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

b: P=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)


Các câu hỏi tương tự
kietdeptrai
Xem chi tiết
kietdeptrai
Xem chi tiết
kietdeptrai
Xem chi tiết
gyurbsrg
Xem chi tiết
Trọng tâm Nguyễn
Xem chi tiết
phạm kim liên
Xem chi tiết
Nguyễn hoàng giáp
Xem chi tiết
Hải Yến Lê
Xem chi tiết
hải anh thư hoàng
Xem chi tiết