cho N= 2..4.5.6.7.Chứng minh rằng n+2,n+3,n+4,n+5,n+6,n+7 là hợp số.
n>2 và n ko chia hết cho 3.chứng minh rằng n2-1 và n2+1 ko thể đồng thời là số nguyên tố
cho p và p+4 là các số nguyên tố(p>3).chứng minh p+8 là hợp số
cho p và p+8 là số nguyên tố (p>3).hỏi p+100 là số nguyên tố hay hợp số
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
TEST CHỨNG MINH
1.Chứng minh rằng: Tích 2 số tự nhiên chẵn liên tiếp chia hết cho 8.
2.Cho B=7+72+73+74+75+76+77+78+79.B có chia hết cho 19 ko?Vì sao?
3.a)Tìm số tự nhiên n sao cho: (n+5):hết cho(n+1); (n+8):hết cho(n+3); (n+6):hết cho(n-1); (2n+3):hết cho(3n+1)
b)Chứng tỏ với mọi số tự nhiên n thì (n-2007)(n+2010) là một số chẵn.
bạn chia thành ngắn í,dài khong thích đọc
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
giúp mik câu này nha .Cho n là số tự nhiên .Chứng minh rằng n(n+1)(n+2) chia hết cho 6
ta thấy n , n+1 , n+2 là 3 số tự nhiên liên tiếp
->trong đó chắc chắn có 1 số chẵn hay có 1 số chia hết cho 2
->n.(n+1).(n+2) chia hết cho 2
lại có: trong 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3
->n.(n+1).(n+2) chia hết cho 3
tích đó chia hết cho 2 và 3 ->tích đó chia hết cho 2.3
->n(n+1)(n+2) chia hết cho 6
mình cũng không chắc nữa
TK : https://hoidap247.com/cau-hoi/1052787
Ta thấy n(n+1)(n+2) là 3 sô tự nhiên liên tiếp
Mà tổng 3 số tự nhiên liên tiếp thì chia hết cho 2 và 3
\(\Rightarrow\)Tích của 3 số tự nhiên liên tiếp thì chia hết cho 2x3=6 (đpcm)
chứng minh rằng n thuộc N
a) n và n + 1 là 2 số n tố cùng nhau
b) 21n + 4 và 14n + 3 là số n tố
chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2+4 và n2+16 là các số nguyên tố n chia hết cho 5
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
Cho các số a,b,c,m,n,p nguyên dương thỏa mãn : \(a^2+b^2+c^2\text{=}m^2+n^2+p^2\)
Chứng minh rằng : a + b + c + m + n + p là hợp số.
Ta có: \(a^2+b^2+c^2=m^2+n^2+p^2\)
\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2=2\left(m^2+n^2+p^2\right)\)
Vì \(2\left(m^2+n^2+p^2\right)⋮2\)\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2⋮2\)(1)
Vì tích hai số tự nhiên liên tiếp chia hết cho 2 nên:
\(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+m\left(m-1\right)\)
\(+n\left(n-1\right)+p\left(p-1\right)\)là số chẵn
\(\Rightarrow\left(a^2+b^2+c^2+m^2+n^2+p^2\right)-\left(a+b+c+m+n+p\right)⋮2\)(2)
Từ (1) và (2) suy ra a + b + c + m + n + p chia hết cho 2
Mà a + b + c + m + n + p > 2 ( do a,b,c,m,n,p dương) nên a + b + c + m + n + p là hợp số (đpcm)
Chứng minh rằng A = 1 + 3 + 5 + 7 ......... + n là số chính phương ( n lẻ )