Tìm \(a:\)
\(x^2-a.x-5a^2-\frac{1}{4}⋮x+2a\)
Bài 1: Cho \(\frac{2a+3b}{2c+3d}=\frac{5a+b}{5c+d}\) . Chứng minh rằng \(\left(\frac{2a+3c}{2b+3d}\right)^3=\frac{2a^3+3c^2}{2b^2+3d^2}\)
Bài 2:Tìm các số x,y biết \(\frac{x-3}{2y}=\frac{5y+6}{4}=\frac{3}{2y+2}\)
Tìm số nguyên tố a biết
a) 2a +\(\frac{8}{8}-\frac{a}{5}\)là 1 số nguyên
b) \(\frac{2a+9}{a+3}_{ }+\frac{5a+16}{a+3}-\frac{39}{a+3}\)lafg 1 số nguyên
bài 2
tìm số nguyên x biết \(\frac{1}{2}-\left(\frac{1}{3}-\frac{3}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
a ) Tìm giá trị lớn nhất của biểu thức : \(B=x+\frac{1}{2}-|x-\frac{2}{3}|\)
b ) Tìm số nguyên a để : \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Tìm A biết (x-3)(2-3x)-x+2A-4=5A+1
Giúp mik vs! Cần gấp lắm ~~~
Tìm A biết (x-3)(2-3x)-x+2A-4=5A+1
Giúp mik vs. Cần gấp lắm!
Tìm a để phương trình a^2 (x-3)=2(2a-1)-5a +x vô nghiệm
\(\Leftrightarrow a^2x-3a^2-4a+2+5a-x=0\)
\(\Leftrightarrow x\left(a^2-1\right)-3a^2+a+2=0\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=\left(a-1\right)\left(3a+2\right)\)
Để pt vô nghiệm thì a+1=0
hay a=-1
Bài 1: Cho A=/x+5/+2-x
a) Viết biểu thức A dưới dạng ko có dấu giá trị tuyệt đối
b) tìm giá trị nhỏ nhất của A
Bài 2: Chứng Minh rằng:
\(\frac{1}{2}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
b) Tìm số nguyên a để :
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Rút gọn biểu thức
a,\(A=\frac{2}{x^2-y^2}\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
b, \(B=\frac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
giả sử b và c là các nghiệm của phương trình : \(x^2-a.x-\frac{1}{2a^2}=0\)(a khác o)
chứng minh: \(b^4+c^4\ge2+\sqrt{2}\)
vì b,c là nghiệm của phương trình nên \(\hept{\begin{cases}b^2-ab-\frac{1}{2a^2}=0\\c^2-ab-\frac{1}{2a^2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b^4=\left(ab+\frac{1}{2a^2}\right)^2\\c^4=\left(ac+\frac{1}{2a^2}\right)^2\end{cases}}\)
\(b^4+c^4=\left(ab+\frac{1}{2a^2}\right)^2+\left(ac+\frac{1}{2a^2}\right)^2\ge\frac{1}{2}\left(ab+ac+\frac{1}{a^2}\right)^2\)
\(=\frac{1}{2}\left[a\left(b+c\right)+\frac{1}{a^2}\right]^2\)
mà theo viet : (tính delta đầu tiên nhá ): b+c=a.
\(\Rightarrow b^4+c^4\ge\frac{1}{2}\left(a^2+\frac{1}{a^2}\right)^2\ge2\)(AM-GM)
Dấu = xảy ra khi a=1 hoặc a=-1
Có kiểm tra lại bài làm của mình chưa thế. Người ta bảo chứng minh >= 2 + √2 bạn chứng minh >= 2 là đủ thấy sai rồi. Thế a = 1 vô thử đi nhé.