Câu 24: cho đa thức: Q(x)=x2 – 4
a) Tìm x để đa thức có giá trị = 0
b) Tìm GTNN của đa thức
Bài 1 ( Cho đa thức A = 4n3 – 2n2 – 6n + 5 và đa thức B = 2n – 1.
Tìm giá trị nguyên của n để đa thức A chia hết cho đa thức B.
Bài 2
Tìm GTLN hoặc GTNN của biểu thức : Q = - x2 – y2 – 4x + 2y + 2
Các bạn giúp mik dc ko mik dag cần gấp ạ
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)
tìm giá trị nguyên của a để đa thức x4 - x3 + 6x2 - x + a chia hết cho đa thức x2 - x + 5
giúp mik với ):
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)
a,tìm giá trị của a để đa thức 3x2 + 7x + a +4 chia hết cho đa thức x - 5
b,tìm giá trị của b để đa thức 2x3 - 3x2 + x +b chia hết cho đa thức x + 2
a/ Tìm a sao cho đa thức : x4 – x3 + 6x2 – x + a chia hết cho đa thức: x2 – x + 5
b/ Tính giá trị nguyên của n để giá trị của biểu thức : 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức: 3n + 1
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
Cho đa thức A=x3 + 3x2 + 3x -2 và đa thức B= x+1
a) Thực hiện phép chia đa thức A cho đa thức B.
b) Tìm các giá trị nguyên của x để giá trị của đa thức A chia hết cho giá trị của đa thức B.
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
Giúp mik với ạ
Bài 7: Cho đa thức
A(x) = -1 + 5x6 - 6x -5 - 9x6 + 4x4 - 3x2
a) Tìm đa thức C(x) sao cho C(x) + B(x) = A(x)
với B(x) =- 4x6 + 4x4 - 9x2 - 4x + 2
b) *Tìm nghiệm của đa thức C(x)
Tìm x để đa thức M(x) = C(x) + (x2 + 2x) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất
Bài 8: Cho hai đa thức:
M(x) = - 4x3 + 2x4 – x2 + 3x2 – x3 – x4 + 1 + 5x3
N(x) = 3x2 + x3 – x4 - 6 + 2x4 - 3x – 8 - x3 – x2
a, Tìm P(x) sao cho P(x) + N(x) = M(x), tìm nghiệm của P(x)
b, Chứng tỏ đa thức M(x) không có nghiệm (vô nghiệm)
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
Cho đa thức: P(x)=\(x^2+mx-9\)( m là tham số)
a) tìm giá trị của m để x=1 là nghiệm của đa thức
b) Khi m=0 tìm tất cả nghiệm của đa thức P(x)
c) Khi m=0, tìm giá trị nhỏ nhất của đa thức P(x)
cho hai đa thức A = 2x3 + 5x2 - 2x + a và B= 2x2-x+1
a) tính giá trị đa thức B tại x= -1
b) tìm a để đa thức A chia hết cho đa thức B
c) tìm x để giá trị đa thức B =1
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
Cho đa thức f(x)= x3+3x2+2x
a)phân tích các đa thức f(x) thành nhân tử
b) Tìm x để đa thức f(x)=0
c)tìm x nguyên để giá trị của đa thức f(x) chia hết cho x+3.
a. x3+x2+2x2+2x
= (x3+x2)+(2x2+2x)
= x2(x+1)+2x(x+1)
= (x2+2x)(x+1)
= x(x+2)(x+1)