Cho tam giác ABC có 3 góc nhọn , đường cao AH . CM : SABC=1/2.AB.AC.sinA
cho tam giác ABC có 3 góc nhọn , đường cao AH . Chứng minh SABC = 1/2.AB.AC.sinA
giúp tớ với tớ đang cần gấp lắm
Cho tam giác ABC có 3 góc nhọn ,đường cao AH .Chứng minh SABC=1/2.AB.AC.sinA
Các bạn giúp mình với
cho tam giác ABC có 3 góc nhọn , từ A kẻ AH vuông góc với BC . Chứng minh diện tích tam giác ABC = diện tich =1/2.AB.AC.SinA
Đọc đề không hiểu. Bạn sửa lại cho đúng đi
1)cho tam giác ABC vuông tại A vẽ đường cao AH.
a) Cm:tam giác ABC và tam giác ABH đồng dạng
b)Cm:AB2=BH.BC
c) Kẻ HD vuông góc AB tại D và HE vuông góc AC tại e. Cm tam giác ADE và tam giác ABC đồng dạng
2)Cho tam giác ABC (AB<AC) có 3 góc nhọn, đường cao AH. Kẻ HE,HF lần lượt vuông góc với AB,AC.(E (- AB,F (- AC)
A)CM:tam giác AEH ~ TAM GIÁC AHB
b) CM:AE.AB=AF.AC
C)Đường thẳng EF cắt BC tại M . CM MB.MC=ME.MF
giúp e với ạ mai e thi r
Câu 1:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đo: ΔABC đồng dạng với ΔHBA
b: Ta có: ΔABC đồng dạg với ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
c: Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
DO đó: ΔADE\(\sim\)ΔACB
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp (O) , kẻ đường cao AH. Gọi M,N là hình chiếu vuông góc của H trên AB và AC. Kẻ NE vuông góc AH. Đường vuông góc với AC kẻ từ C cắt (O) tại I và AH tại D , AH cắt (O) tại F.
a) CM góc ABC + góc ACB = góc BIC và tứ giác DENC nội tiếp
b) CM : AM.AB= AN.AC và tứ giác BFIC là hình thang cân
c) Tứ giác BMED nội tiếp
Cho tam giác ABC có 3 góc nhọn, AI là đường trung tuyêń. Gọi D là điểm đối xứng với A qua I.
A) cm: tứ giác ACBD là hình bình hành
B) gọi H là giao điểm củq 2 đường cao BF và CE của tam giác ABC. cm: AH vuômg góc với BC.
Làm ơn giúp mình, đặc biệt là câ b đấy ưấy bq̣n, cảm ơn trước!
a: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
b: Xét ΔABC có
BF là đường cao
CE là đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
hay AH⊥BC
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC
1) Cm tứ giác AMBH nội tiếp
2) Cm AM=AH=AN
3) Gọi giao điểm của MN với AB và AC lần lượt là F và E. Cm E thuộcđường tròn ngoại tiếp tứ giác AMBH
4) Cm 3 đường thẳng AH,BE,CF đồng quy
Cho tam giác ABC có AB < AC , đường cao AH . Chứng minh rằng: HB < HC , góc HAB < góc HAC ( xét hai trường hơp : góc B nhọn và góc B tù).
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lytranvietha 0_0 - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC có 3 góc nhọn nội tiếp với đường tròn (O),đường cao AH của tam giác cắt đường tròn ở D,vẽ đờng kính AOE
a.chứng minh BDEC là hình thang cân
b.gọi m là điểm chính giữa của cung DE,Om cắt BC tại I.chứng minh I là trung điểm của BC
c.tính bán kính của đường tròn biết BC=24cm,IM=8cm