Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
14 tháng 8 2017 lúc 20:47

Ta có : A = \(\frac{1}{1\text{x}2}+\frac{1}{2\text{x}3}+\frac{1}{3\text{x}4}+...+\frac{1}{X\text{x}\left(X+1\right)}\)

           A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)

           A =  \(\frac{1}{1}-\frac{1}{x+1}\)

           A = \(\frac{x}{x+1}\)

Ủng hộ mik nhá !!!!

Trần Phúc
14 tháng 8 2017 lúc 20:47

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=?\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=?\)

\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=?\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-?\)

\(\Rightarrow x+1=?\Leftrightarrow x=?\)

Nguyễn Quang Thành
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 6 2015 lúc 15:32

ta có:\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{100}=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

bài toán được viết lại như sau:

\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right).x=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\left(\frac{1}{51}+...+\frac{1}{100}\right):\left(\frac{1}{51}+...+\frac{1}{100}\right)\)

\(\Rightarrow x=2012\)

vậy x=2012

Nhók nGu ngƯời
Xem chi tiết
soyeon_Tiểu bàng giải
7 tháng 8 2016 lúc 15:20

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)

\(1-\frac{1}{x+1}=\frac{499}{500}\)

\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)

=> x + 1 = 500

=> x = 500 - 1

=> x = 499

Vậy x = 499

Uzumaki Naruto
7 tháng 8 2016 lúc 15:22

1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500

1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500

1-1/(x+1)=499/500

=>x/(x+1)=499/500

=>x=499

Nhók nGu ngƯời
Xem chi tiết
Nguyễn Mạnh Trung
7 tháng 8 2016 lúc 15:20

Ta có: 1/1x2 + 1/2x3 + 1/3x4 +...+ 1/X x (X + 1) = 499/500

=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/X - 1/(X + 1) = 499/500

=> 1 - 1/(X + 1) = 499/500

=>      1/(X + 1) = 1 - 499/500

=>      1/(X + 1) = 1/500

=>          X + 1 = 500

=>          X       = 500 - 1

=>          X       = 499 

Đáp số: X = 499

Cá Bống
Xem chi tiết
Hồ Thu Giang
25 tháng 7 2015 lúc 16:08

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(1-\frac{1}{x+1}=\frac{99}{100}\)

=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x+1 = 100

=> x = 100 - 1 

=> x = 99

KIM SEE YUN
25 tháng 7 2015 lúc 16:12

mơ đi Nguyễn Đình Dũng

Duy Khánh
Xem chi tiết
Võ Ngọc Phương
24 tháng 8 2023 lúc 20:40

\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{\left(x-1\right)\times x}=\dfrac{15}{16}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x-1}-\dfrac{1}{x}=\dfrac{15}{16}\)

\(1-\dfrac{1}{x}=\dfrac{15}{16}\)

\(\dfrac{1}{x}=1-\dfrac{15}{16}=\dfrac{16}{16}-\dfrac{15}{16}\)

\(\dfrac{1}{x}=\dfrac{1}{16}\)

\(\Rightarrow x=16\)

NGUYỄN NGỌC BẢO NHI
24 tháng 8 2023 lúc 20:37

?

Hoàng Tử Bóng Đêm
Xem chi tiết
Đoàn Đức Hà
25 tháng 5 2021 lúc 21:39

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

Khách vãng lai đã xóa
Đoàn Đức Hà
25 tháng 5 2021 lúc 21:41

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Khách vãng lai đã xóa
nguyen thi hong ngan
Xem chi tiết
Wall HaiAnh
11 tháng 3 2018 lúc 8:01

 Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2013}{2014}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)

\(\Rightarrow A=1-\frac{1}{x+1}=\frac{2013}{2014}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2013}{2014}\)

\(\Rightarrow\)\(\frac{1}{x+1}=\frac{1}{2014}\)

\(\Rightarrow x+1=2014\)

\(\Rightarrow x=2014-1\)

\(\Rightarrow x=2013\)

Vậy x=2013

tth_new
11 tháng 3 2018 lúc 8:02

 \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2014}\)

\(1-\frac{1}{x+1}=\frac{2013}{2014}\)

\(\frac{1}{x+1}=1-\frac{2013}{2014}\)

\(\frac{1}{x+1}=\frac{1}{2014}\)

Vì \(x+1\)là mẫu số nên:

\(x+1=2014\)

\(x=2014-1=2013\)

Vậy ....

  P/s: Dấu . là nhân nha!

Lanh Tống Thị Kim
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 7 2015 lúc 15:36

Bài 1:

Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)

\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)

\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)

\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

\(A=\frac{2x19}{20}=\frac{19}{10}\)

Bài 2:

Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)

Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)

\(Bx100=\frac{9}{10}x100=90\)

=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)

=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)

=>  \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)

pham thi thu uyen
3 tháng 7 2015 lúc 15:34

bài 1 đáp án là:19/10

2:147/50

 

Nguyễn Thị Minh Hòa
25 tháng 7 2017 lúc 9:47

đáp án bài 1 là: 19/10

đáp án bài 2 là 147/50