Cho x,y là số dương thỏa mãn x+y<1. Tìm giá trị nhỏ nhất của biểu thức: A= 1/x3+3xy2 + 1/y3+3x2y
Cho x, y là các số thực dương thỏa mãn lnx + lny ≥ ln(x2+y) là các số thực dương thỏa mãn P = x + y
A. P = 6
B. P = 2 + 3 2
C. P = 3 + 2 2
D. P = 17 + 3
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln ( x 2 + y ) là các số thực dương thỏa mãn P = x + y
Bài 1:Cho x, y là các số nguyên dương thỏa mãn x+y= 3.\(\sqrt{xy}\).Tinh x/ y
Bài 2: Tìm các số nguyên dương x, y thỏa mãn (1/x)+(1/y)=1/2
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
.....
Sau khi chi ra x-2 la uoc nguyen duong cua 4
Co 3 Truong hop
x-2 =1; x-2=2;x-2=4
Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y
co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
cho x,y là số thực dương thỏa mãn \(\sqrt{xy}\left(x-y\right)=x+y\). Tìm min \(P=x+y\)
Do \(x-y=\dfrac{x+y}{\sqrt{xy}}>0\Rightarrow x>y\)
Khi đó:
\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)
\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)
\(\Rightarrow\left(xy-1\right)\left(x+y\right)^2=4x^2y^2\)
\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2}{xy-1}\)
Do vế trái dương nên vế phải dương \(\Rightarrow xy-1>0\)
\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2-4+4}{xy-1}=4xy+4+\dfrac{4}{xy-1}=4\left(xy-1\right)+\dfrac{4}{xy-1}+8\)
\(\ge2\sqrt{4\left(xy-1\right).\dfrac{4}{xy-1}}+8=16\)
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)
Cho x, y nguyên dương thỏa mãn: 3x² + x = 4y² + y Chứng minh rằng x - y là số chính phương
Từ giả thiết:
\(3x^2+x=4y^2+y\Leftrightarrow\left(3x-4y\right)^2=12x^2+12y^2-24xy+\left(x-y\right)\)
\(\Leftrightarrow\left(3x-4y\right)^2=12\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left[12\left(x-y\right)+1\right]\)
Hiển nhiên ta có \(12\left(x-y\right)+1\) và \(x-y\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP \(\Rightarrow\) cả 2 số đều phải là SCP
Hay \(x-y\) là SCP
cho x,y là các số nguyên dương thỏa mãn x+2y/x+y=2018/2017
cho x,y là các số nguyên dương thỏa mãn x+2y/x+y=2018/2017
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤