x+2y=1. Tim gtnn cua K=x2+2y2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Tìm GTNN của biểu thức F = x2– 2xy + 2y2 – 2y +2022
Ai giúp mình với
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Tim GTNN cua:(x2+x+1)^2
((X+1)^2)^2 bé hơn hoặc bằng 0
Suy ra x+1=0,Nên x=-1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
x,y là 2 số tự nhiên thỏa mãn x+2y=3
Tìm gtnn (giá trị nhỏ nhất) của E= x2+2y2
x,y là 2 số tự nhiên thỏa mãn x+2y=3
Tìm gtnn (giá trị nhỏ nhất) của E= x2+2y2
1) tim GTNN cua cac don thuc a)x^2 - 4xy + 5y^2 - 2y + 3
b)x^2 - 2xy + 2y^2 - x +y
Tim GTnn cua x^2-2xy+2y^2-6y+9
gọi biểu thức trên là A.
Ta có: \(A=x^2-2xy+2y^2-6y+9\)
\(\Rightarrow A=x^2-2xy+y^2+y^2-6y+9\)
\(\Rightarrow A=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)\)
\(A=\left(x-y\right)^2+\left(y-3\right)^2\)
Nhận xét: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2\ge0\forall x,y\)
Vậy \(minA=0\) khi \(y-3=0\Rightarrow y=3\)
\(x-y=0\Rightarrow x-3=0\Rightarrow x=3\)
KL: Vậy \(minA=0\) khi \(x=3;y=3\)
Đặt \(A=x^2-2xy+2y^2-6y+9=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)=\left(x-y\right)^2+\left(y-3\right)^2\)
Vì \(\left(x-y\right)^2\ge0;\left(y-3\right)^2\ge0\Rightarrow A=\left(x-y\right)^2+\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)
Vậy Amin = 0 khi x = y = 3