Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Nguyễn Văn Khang
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 15:40

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

ILoveMath
16 tháng 11 2021 lúc 15:41

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

HOANG THI QUE ANH
Xem chi tiết
Thanh Tiên
14 tháng 7 2016 lúc 21:42

((X+1)^2)^2 bé hơn hoặc bằng 0

Suy ra x+1=0,Nên x=-1

Phạm Minh Quang
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
Xem chi tiết
do thai
Xem chi tiết
do thai
Xem chi tiết
buidatkhoi
Xem chi tiết
huy
Xem chi tiết
Aikawa Maiya
11 tháng 7 2018 lúc 8:57

gọi biểu thức trên là A.

Ta có: \(A=x^2-2xy+2y^2-6y+9\)

\(\Rightarrow A=x^2-2xy+y^2+y^2-6y+9\)

\(\Rightarrow A=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)\)

 \(A=\left(x-y\right)^2+\left(y-3\right)^2\)

Nhận xét: \(\left(x+y\right)^2\ge0\forall x,y\)

                 \(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2\ge0\forall x,y\)

Vậy \(minA=0\) khi \(y-3=0\Rightarrow y=3\)

                                       \(x-y=0\Rightarrow x-3=0\Rightarrow x=3\)

KL: Vậy \(minA=0\) khi \(x=3;y=3\)

ST
11 tháng 7 2018 lúc 8:58

Đặt \(A=x^2-2xy+2y^2-6y+9=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)=\left(x-y\right)^2+\left(y-3\right)^2\)

Vì \(\left(x-y\right)^2\ge0;\left(y-3\right)^2\ge0\Rightarrow A=\left(x-y\right)^2+\left(y-3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)

Vậy Amin = 0 khi x = y = 3