cho hình vẽ AB//CD,AD và BC cắt nhao tại O.chứng minh rằng OA:OD=OB:OC
: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Cho hình thang ABCD (AB//CD) có AB=5cm;CD=15cm và AD=10cm.Hai cạnh bên kéo dài cắt nhau tại O.Chứng minh tam giác AOB cân(gợi ý đặt OA=x).
Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)
\(\widehat{OBA}=\widehat{OCD}\)
mà \(\widehat{ODC}=\widehat{OCD}\)
nên \(\widehat{OAB}=\widehat{OBA}\)
hay ΔOAB cân tại O
Cho hình chữ nhật ABCD (AB > AD). Trên cạnh AD, BC lần lượt lấy các điểm M và N sao cho AM = CN.
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt cạnh CD tại Q. chứng minh rằng PBQD là hình thoi.
c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:
∠POB = ∠QOD∠ (đối đỉnh),
OB = OD
∠PBO = ∠QDO (so le trong).
Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ
Lại có BP // DQ nên tứ giác PBQD là hình bình hành
Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.
Cho hình thang ABCD (AB//CD), 2 đường chéo cắt nhau tại O. Qua O vẽ đường thẳng sọng song với AB cắt AD và BC lần lượt tại M và N. Chứng minh rằng:
a, OM=ON
b, 1/AB + 1/CD = 2/MN
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Cho hình thang ABCD ( AB // CD ). Qua giao điểm O hai đường chéo AD và BC vẽ đường song song với AB và CD cắt AD và BC tại M và N. Chứng minh OM = ON.
Hình thì dễ rồi you tự vẽ nha
Ta có ; OM // AB ( gt )
Theo hệ quả của định lý Ta lét ta có :
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{BD}\)( 1 )
ON // AB ( gt )
\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )
AB // CD ( gt )
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\)\(\Rightarrow\)\(\frac{OD}{OB+OD}=\frac{OC}{OC+OA}\)
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{AC}\)( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 )
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{ON}{AB}\)\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)
Vậy \(OM=ON\)
ÁP DỤNG ĐỊNH LÍ TA-LÉT
\(\frac{OM}{CD}=\frac{AO}{AD}=\frac{OB}{CB}=\frac{ON}{CD}\)
Cho tứ giác ABCD;Bx//CD cắt AC tại E.Qua C kẻ Cy//AB cắt BD tại F.Gọi giao của AC và BD là O.Chứng minh EF//AD
cho hình thang cân ABCD( AB//CD) . AD cắt BC tại I, AC cắt BD tại J . chứng minh rằng IJ là trung trực của AB và là trung trực của CD