Xét ΔODC có AB//DC
nên OA/OD=OB/OC
Xét ΔODC có AB//DC
nên OA/OD=OB/OC
Cho hình chữ nhật ABCD (AB > AD). Trên cạnh AD, BC lần lượt lấy các điểm M và N sao cho AM = CN.
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt cạnh CD tại Q. chứng minh rằng PBQD là hình thoi.
Cho hình thang ABCD (AB//CD), 2 đường chéo cắt nhau tại O. Qua O vẽ đường thẳng sọng song với AB cắt AD và BC lần lượt tại M và N. Chứng minh rằng:
a, OM=ON
b, 1/AB + 1/CD = 2/MN
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Cho hình thang ABCD ( AB // CD ). Qua giao điểm O hai đường chéo AD và BC vẽ đường song song với AB và CD cắt AD và BC tại M và N. Chứng minh OM = ON.
Cho tứ giác ABCD;Bx//CD cắt AC tại E.Qua C kẻ Cy//AB cắt BD tại F.Gọi giao của AC và BD là O.Chứng minh EF//AD
Cho hình thang ABCD, đáy nhỏ AB. Phân giác góc A và góc D cắt nhao tại M, phân giác góc B và góc C cắt nhau tại N. Gọi E và F lần lượt là trung điểm của AD và BC. Chứng minh: a, M, E, F, N thẳng hàng
b, 2MN = ( AB + CD ) - ( AD + BC )
Cho hình thang ABCD(AB//CD); AC cắt BD tại O.Chứng minh OA=OB và OC=OD
Bài 1; Cho hình thang ABCD (AD//BC), phân giác góc A cắt BC tại E
a) Chứng minh rằng AB=BE
b)Phân giác góc B cắt AE tại F. Chứng minh BF vuông góc AE và FA=FE
c) Gọi M là trung điểm của AB và N là trung điểm của CD. Chứng minh M,F,N thẳng hàng
Bài 2; Cho hình thang ABCD (AB//CD) có AB+BC=CD . Chúng minh tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD
Bài 3 Cho hình thang ABCD (AB//CD) , tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD . Chứng minh AD+BC=CD
cho hình thang ABCD ( AB// CD , AB<CD ) AC cắt BD tại I . Từ I vẽ đường thẳng song song với AB cắt AD và BC theo thứ tự ở M ,N . Chứng minh IM =IN