Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Hà
Xem chi tiết
Giang Pham
Xem chi tiết
hong pham
Xem chi tiết
alibaba nguyễn
1 tháng 11 2016 lúc 16:55

Gọi giao điểm hai đường chéo hình thoi là I

Vì hình thoi có góc A =60 nên tam giác ABD đều => AB = AD = DB

Ta có AC = 2AI

\(AI^2=AB^2-BI^2=AB^2-\frac{BD^2}{4}=AB^2-\frac{AB^2}{4}=\frac{3AB^2}{4}\)

\(\Rightarrow\frac{AC^2}{AB^2}=\frac{4AI^2}{AB^2}=\frac{4\frac{3AB^2}{4}}{AB^2}=3\)

hong pham
3 tháng 11 2016 lúc 19:27

cảm ơn bạn nhiều nhé! Bạn giỏi quá à!

Oo Bản tình ca ác quỷ oO
3 tháng 11 2016 lúc 19:57

bn giỏi thật nhưng mk có chỗ ko hỉu!!!

56657675684462454363462456346457474627685

Trần Phan Nguyên Kha
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2019 lúc 17:49

ĐÁP ÁN A

Ta có 

S A B C D = a 2 sin 60 ° = a 2 3 2 A A ' = 30 ° = a 3 3

Thể tích khối hộp là V = A A ' . S A B C D = a 3 3 . a 2 3 2 = a 3 2  

Nguyen Hong Nhung
Xem chi tiết
Mi Mi Lê Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 23:34

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(AB=BC\cdot\cos60^0\)

\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)

\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)

\(\widehat{C}=90^0-60^0=30^0\)

Ngo Bảo
Xem chi tiết
Lê
25 tháng 2 2021 lúc 20:53

bạn tự vẽ hình nha ( mình nản vẽ hình lắm ) 

ta có AB = 6 cm 

lại có góc ABC = 60 độ 

suy ra : △ABC là △ đều  ( △cân có một góc bằng 60 độ ) 

suy ra AC bằng 6 cm suy ra AO = CO = 3 cm 

xét △ABO vuông tại O có :

theo định lý py-ta-go ta có AB2 = BO2+ AO2 

=> BO2 = 36 - 9 = 25 (cm)

=> BO = 5 cm 

=> BD = 10 cm 

vậy diện tích hình thoi là:

1/2.6.10 = 30cm2 ( điều cần tìm )

 

Lươn Đậu Văn
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 1 2020 lúc 9:21

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

Khách vãng lai đã xóa