cho tam giác ABC vuông tại A
vẽ AH vuông góc với BC (H thuộc BC)
lấy M thuộc AC,vẽ MN vuông góc với BC (N thuộc BC)
a, tìm góc = góc B
b, tìm góc = góc C
c, tìm góc bù với góc B
Cho tan giác ABC vuông tại A vẽ AH vuông gócBC(H thuộc BC).lấy điểm M bất kì trên cạnh AC vẽ MN vuông góc BC(N thuộc BC)
a,tìm góc bằg gócB
b.tìm góc bù góc B
c.tìm góc bằng góc C
tam giác ABC cân tại A, góc A = 50 độ
a). Tính góc B, góc C
b). Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh tam giác ABH = tam giác ACH
c). Biết AB = 17cm, BC = 16cm, tính AH
d). Vẽ CN vuông góc với AB (N thuộc AB), BM vuông góc với AC (M thuộc AC). Chứng minh NC = MB
aVẽ tam giác ABC.Qua A vẽ AH vuông góc với BC (H thuộc BC).Từ H vẽ HK vuông góc với AC (K thuộc AC);Qua A vẽ đường thẳng song song với B (cắt AB tại E)
bChỉ ra một cặp góc so le trong bằng nhau,1 cặp góc đối đỉnh bằng nhau
c Chứng minh :AH vuông góc với EK
dQua A vẽ đường thẳng m vuông góc với AH
CMR:m song song với EK
cho tam giác abc vuông tại A(AB<AC) vẽ AH vuông góc BC(H thuộc BC) D là điểm trên cạnh AC sao cho AD = AB Vẽ DE vuông góc với BC (E thuộc BC) DK vuông góc với AH tại K Chứng minh
a, AH = DK
b, Tam giác AHE vuông cân
Cho tam giác ABC, vẽ AH vuông góc với BC (H thuộc BC). Biết AB = 10cm, AH = 8cm, HC = 6cm
a) Tính AC và BH?
b) Chứng minh: góc ABC bằng góc ACB.
c) Vẽ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: tam giác HMN là tam giác cân.
a, Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
mà AH là đường cao đồng thời là đường trung tuyến
=> HC = HB = 6 cm
b, Vì tam giác ABC cân tại A => ^ABC = ^ACB
c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác
=> ^BAH = ^HAC
Xét tam giác AMH và tam giác ANH có :
^AMH = ^ANH = 900
AH _ chung
^BAH = ^NAH ( cmt )
Vậy tam giác AMH = tam giác ANH ( ch - gn )
=> MH = NH ( 2 cạnh tương ứng )
Xét tam giác HMN có MH = NH ( cmt )
=> tam giác HMN cân tại H
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). TÌm góc bằng góc B
Tham Khảo:
https://olm.vn/hoi-dap/detail/86010246553.html
Có thể tìm góc B bằng hai cách:
Cách 1
Ta có: ∠(A1 ) + ∠(A2 ) = ∠(BAC) = 90o(1)
Vì ΔAHB vuông tại H nên:
∠B + ∠(A1) = 90o(tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra ∠B = ∠(A2 )
Cách 2
Vì ΔABC vuông tại A nên:
∠B +∠C = 90o (theo tính chất tam giác vuông) (1)
Vì ΔAHC vuông tại H nên:
∠(A2 ) + ∠C = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B = ∠(A2)
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tìm góc bằng góc B.
Có thể tìm góc B bằng hai cách:
Cách 1
Ta có: ∠(A1 ) + ∠(A2 ) = ∠(BAC) = 90o(1)
Vì ΔAHB vuông tại H nên:
∠B + ∠(A1) = 90o(tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra ∠B = ∠(A2 )
Cách 2
Vì ΔABC vuông tại A nên:
∠B +∠C = 90o (theo tính chất tam giác vuông) (1)
Vì ΔAHC vuông tại H nên:
∠(A2 ) + ∠C = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B = ∠(A2)
cho tam giác ABC, vẽ về phía ngoài tam giác ABC các tam giác vuông tại A là tam giác ABD và tg ACE sao cho AB = AD, AC = AE.kẻ AH vuông góc với BC (H thuộc BC), DM vuông góc với AH(M thuộc AH), EN vuông góc với AH(N thuộc AH)
a) cm: DM =AH
b)cm MN đi qua trung điểm của DE
c)gọi K là trung điểm của BC. cm AK vuông góc với DE
Bạn vẽ hình ra nhé!
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Chúc bạn học giỏi!
tk nha bạn
thank you bạn
(^_^)
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). TÌm góc bằng góc B
Ta có:
góc BAH + góc HAC= 90độ (tam giác ABC vuông tại H)
Mà góc BAH + góc ABH =90độ (tam giác ABH vuông tại H)
=>góc ABH= góc HAC
Vậy góc B = góc HAC
cái tam giác mik vẽ là tam giác vuông cân nên góc B = góc C
nếu là tam giác thường thì khi đó:
kẻ đường thẳng sog song với AB đí qua H cắt AC tại K ( theo hibhf vẽ)
khi đó theo tính chất 2 đường thẳng song song sẽ có HK // BA
mà BA vuông góc tại AC( tam giác ABC vuông tại A)
=> HK vuông góc với AC
theo tính chất đồng vị => góc B = góc CHK