Tìm m,n biết đa thức H(x)=x^3+x^2+m.x+n-1 có nghiệm là 0;1
Bài 2. Tìm m để các đa thức
a) f(x)= m.x3+x2+x+1 có nghiệm là -1
b)g(x)= x4+m2.x3+m.x2+m.x-1 có nghiệm là 1
c) h(x)= x3-2x2+m có nghiệm là -3
a,Ta có:
\(f\left(-1\right)=0\)
\(\Leftrightarrow m.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1=0\)
\(\Leftrightarrow m.\left(-1\right)+1-1+1=0\)
\(\Leftrightarrow-m+1=0\)
\(\Leftrightarrow-m=-1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)thì đa thức có nghiệm là -1
b,Ta có:
\(g\left(1\right)=0\)
\(\Leftrightarrow1^4+m^2.1^3+m.1^2+m.1-1=0\)
\(\Leftrightarrow1+m^2+m+m-1=0\)
\(\Leftrightarrow m^2+2m=0\)
\(\Leftrightarrow m.\left(m+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=0\\m=-2\end{cases}}\)
Vậy \(m=\left\{0,-2\right\}\)thì đa thức có nghiệm là 1
c, Ta có:
\(h\left(-3\right)=0\)
\(\Leftrightarrow\left(-3\right)^3-2.\left(-3\right)^2+m=0\)
\(\Leftrightarrow-27-2.9+m=0\)
\(\Leftrightarrow-27-18+m=0\)
\(\Leftrightarrow-45+m=0\)
\(\Leftrightarrow m=45\)
Vậy \(m=45\)thì đa thức có nghiệm là -3
a) f(x) = m.x3 + x2 + x + 1
f(x) có nghiệm x = -1
=> f(-1) = m(-1)3 + (-1)2 + (-1) + 1 = 0
=> -m + 1 - 1 + 1 = 0
=> -m + 1 = 0
=> -m = -1
=> m = 1
Vậy với m = 1 , f(x) có nghiệm x = -1
b) g(x) = x4 + m2.x3 + m.x2 + m.x - 1
g(x) có nghiệm x = 1
=> g(1) = 14 + m2.13 + m.12 + m.1 - 1 = 0
=> 1 + m2 + m + m - 1 = 0
=> m2 + 2m = 0
=> m( m + 2 ) = 0
=> m = 0 hoặc m + 2 = 0
=> m = 0 hoặc m = -2
Vậy với m = 0 hoặc m = -2 , g(x) có nghiệm x = 1
c) h(x) = x3 - 2x2 + m
h(x) có nghiệm x = -3
=> h(-3) = (-3)3 - 2(-3)2 + m = 0
=> -27 - 18 + m = 0
=> -45 + m = 0
=> m = 45
Vậy với m = 45 , h(x) có nghiệm x = -3
a,\(f\left(x\right)\)có nghiệm là -1
\(< =>m.x^3+x^2+x+1=0\)
\(< =>m\left(-1\right)^3+\left(-1\right)^2-1+1=0\)
\(< =>-m+1=0< =>m=1\)
b,\(g\left(x\right)\)có nghiệm là 1
\(< =>x^4+m^2.x^3+m.x^2+m.x-1=0\)
\(< =>1^4+m^2.1^3+m.1^2+m.1-1=0\)
\(< =>m^2+m+m=0< =>m^2+2m=0\)
\(< =>m\left(m+2\right)=0< =>\orbr{\begin{cases}m=0\\m=-2\end{cases}}\)
Cho đa thức A(x) = 2x2 - m.x + n+1 ( với m,n là hằng số)
Tìm các số m,n biết x=1 và x=2 là hai nghiệm của đa thức A(x)
a) Cho đa thức; P(x) = m.x-3. Xác định m biết rằng P(-1)= 2.
b) Cho đa thức Q(x)= (-2)x2+ m.x-7m+3. Xác định m biết rằng Q(x) có nghiệm là -1.
giúp mình với !
có ai chỉ mik bt cách làm của bài toán này ko?
tìm hệ số m của đa thức f(x)=m.x-3,biết rằng đa thức f(x) có nghiệm là 1/2
Vì đa thức f(x) có nghiệm là 1/2
=> x = 1/2
Ta có
f(x) = 0
m.x - 3 = 0
m.1/2 - 3 = 0
m. 1/2 = 3
m = 3 : 1/2
m = 6
VẬY:.................
thanks nha nhưng mik vừa nghĩ ra òi
nhưng dù sao cx cảm ơn
Tìm M để đa thức F(x)=(M-1).x\(^2\)-3.M.x+2 có một nghiệm x= 1
y'=mx² -2(m+1)x +(m-5) (*)
Đặt điều kiện để hs có 2 cực trị ( tức y=(*)=0 có 2 nghiệm pb) <=> m≠0 và ∆' >0
∆' >0
<=> (m+1)² -m(m-5) >0
<=> m² + 2m + 1 - m² +5m>0
<=>m > -1/7
=> ĐK : m> -1/7 và m≠0
Sau đó áp dụng tổng tích thế vào bpt để giải:
x1.x2 = c/a =(m-5)/m
x1+ x2=-b/a = 2(m+1)/m
thế vào bpt:
x1.x2 +3(x1+ x2) -4 <0
<=> (m-5)/m +6(m+1)/m -4 <0
<=> (3m+1)/m>0
do m ≠0 (ĐK) nên ta suy ra:
(3m+1)m>0
<=> m>0 hay m< -1/3
kết hợp điều kiện => m>0
Cho các đa thức: f(x) = x ^ 2 - (m - 1) * x + 3m - 2 g(x) = x ^ 2 - 2(m + 1)x - 5m + 1 h(x) = - 2x ^ 2 + mx - 7m + 3 Tìm m, biết: 1. Đa thức f có nghiệm là –1 2. Đa thức g có nghiệm là 2 3. Đa thức h có nghiệm là –1 4. f(1) = g(2) 5. g(1) = h(- 2)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
Giả sử đa thức f(x) = x^2018 - m.x^2004 + m ( m khác 0 ) có 2018 nghiệm phân biệt. CMR trong các nghiệm đó tồn tại ít nhất 1 nghiệm x(1) thỏa mãn 0<= | x(1)| <=2
Tìm m để:
a) f(x) = m.x2 + 5.x - 2. Có 1 nghiệm bằng -1.
b) f(x) = m.x3 + x2 + x + 1. Có 1 nghiệm bằng -1.
c) f(x) = x4 + m2.x3 + m.x2 + m.x - 1. Có nghiệm là 1.
d) f(x) = x2 - 2x2 - m. Có nghiệm là -3.