Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Việt Bình
Xem chi tiết
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

hanvu
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

An Vy
Xem chi tiết
Nameless
Xem chi tiết
phạm minh tâm
31 tháng 1 2018 lúc 17:40

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

Jack Yasuo
Xem chi tiết
Nguyễn Thanh Thư
23 tháng 12 2017 lúc 20:53

 A = (4x + 3)/(x² + 1) 

CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1) 

Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn : 

(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d² 

<=> a²d² - 2.ad.bc + b²c² ≥ 0 

<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM 

- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d 

- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²) 

<=> (4x + 3)² ≤ 25(x² + 1) 

<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1) 

<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1) 
 

Jack Yasuo
23 tháng 12 2017 lúc 20:56

mà anh ơi kết quả thầy em cho là -1 <=A<=4

Đinh Đức Hùng
23 tháng 12 2017 lúc 20:58

Giair sai rồi còn gì nữa

hang pham
Xem chi tiết
nguyễn minh
Xem chi tiết
nguyễn minh
12 tháng 7 2019 lúc 18:13
Đỗ Thành Trung
Xem chi tiết
Yen Nhi
20 tháng 10 2021 lúc 19:46

a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)

\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=-\frac{1}{x-2}\)

b) \(A\) \(Max\)

\(\Rightarrow-\frac{1}{x-2}Max\)

\(\Rightarrow\frac{1}{x-2}Min\)

\(\Rightarrow\left(x-2\right)\) \(Max\)

\(\Rightarrow x\) \(Max\)

\(\Rightarrow x\in\varnothing\)

Khách vãng lai đã xóa