A=\(4\left(x-1\right)+\frac{25}{x-1}+4\)
Mà theo cô-si ta được \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2\cdot10=20\)
nên A\(\ge\)20+4=24
dấu bằng xảy ra khi 4(x-1)=25/(x-1)...
A=\(4\left(x-1\right)+\frac{25}{x-1}+4\)
Mà theo cô-si ta được \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2\cdot10=20\)
nên A\(\ge\)20+4=24
dấu bằng xảy ra khi 4(x-1)=25/(x-1)...
Cho x>1.Tìm Max của A=4x+25/x-1
Cho 0<x<1 Tìm min của B= 3/1-x + 4/x
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
Tìm max hoặc min của biểu thức sau:
\(C=\sqrt{2x^2+y^2-4x+2y+3}+\sqrt{3x^2+y^2-6x-8y+19}\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{x^2-4x+29}}+\frac{1}{y}\sqrt{\frac{y-25}{y^2-100y+2501}}\)
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Tìm min max của :
a) \(\frac{x^2+2x+3}{x+2}\)
b)\(\frac{4x^2-4x+7}{x^2+1}\)
cho x>1 tìm giá trị lớn nhất của \(A=4x+\frac{25}{x-1}\)
Cho x >1. Tìm GTNN A = \(4x+\frac{25}{x-1}\)
Mọi ng giúp mình với: Cho x > 1. Tìm giá trị lớn nhất của A = 4x + \(\frac{25}{x-1}\)
Tìm Max : \(A=\frac{4x-3x^2}{x^2+1}\)