TÌM n ĐỂ (10n+2) chia hết cho (2n-1)
trả lời đày đủ giùm minh nhé các bạn!!!!
thanks
Tìm số nguyên n để 2n+1 chia hết cho n-3
Gấp lắm . Giúp mình nhé!!!!!!!!!!!!!!!!!..........Mình sẽ tick cho bạn nào trả lời đầu tiên và đúng nhất. Thanks!
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
Tìm chữ số tự nhiên n biết :
a , 4n - 5 chia hết cho 2n - 1
b , 3n + 2 chia hết cho n - 1
CÁC BẠN GIẢI CẢ LỜI GIẢI NHANH GIÙM MÌNH NHÉ
a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
*kí hiệu thuộc vs ước bạn tự viết nha*
b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html
a, ( 4n - 5 ) chia het cho ( 2n - 1 )
=> ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )
=>. ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )
=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)
Vi ( 2n-1) chia het cho ( 2n - 1 )
=> 3 chia het cho ( 2n - 1 )
=> 2n - 1 thuoc U(3)
=> 2n - 1 thuoc { 1; 3}
=> 2n thuoc { 0 ; 2 }
=> n thuoc { 0 ; 1 }
Vay n thuoc { 0; 2 }
Phan b, ban lm tuong tu nha !
Tham khao nha !
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Mọi ng ơi cần gấp nhé nhanh nhanh giùm m và giải đầy đủ nhé ! THANKS
Chứng minh rằng với mọi số nguyên dương n thì: (n+1). (n+2). (n+3).....(2n) chia hết cho 2n
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Tìm nhà thuộc N để (2n+3) chia hết cho (n-1)
Các bạn trả lời vừa làm đc vừa trả lời đúng thích tôi tặng con này ༼ つ ◕_◕ ༽つ
2n + 3 = 2n - 2 + 5
= 2(n - 1) + 5
Để (2n + 3) ⋮ (n - 1) thì 5 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-4; 0; 2; 6}
Mà n T ℕ
⇒ n ∈ {0; 2; 6}
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc Z biết :
a , 2n+1 chia hết cho 2n-3
b , 3n+2 chia hết cho 3n-4
Trả lời nhanh giúp mik nhé . Cảm ơn các pn nhiều!!!
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Với n số nguyên dương, số dư của A= n+111...1 - 7 (gồm 2n chữ số 1) khi chia cho 3 là bao nhiêu?
Các bạn trả lời đầy đủ nhé. Ai trả lời sớm mình tick cho!!! ^_^