chứng tỏ rằng 125^7 + 25^9 - 5^20 chia hết cho 101
chứng tỏ rằng: 125^7 . 25^9 . 5^20 chia hết cho 101
chứng tỏ rằng 1257 . 259 . 520 chia hết cho 101
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
Chứng tỏ rằng: 520+ 2511+ 1257 chia hết cho 31
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)
Cho A=53+54+55+56+57+58+59+510
a,Chứng tỏ rằng A chia hết cho 125
b, Chứng tỏ A chia hết cho 30
Ra A= 5^11-5^3
Vì 5^11chia hết 125
5^3 chia hết cho125
=> 5^11-5^3 chia hết cho125
Bài 3. Chứng tỏ rằng:
a) \(125^{5} + 4 \cdot 5^{12}\) chia hết cho 129;
b) \(1+7+7^2+7^3+\cdots+7^{101}\) chia hết cho 8;
c) \(2+2^2+2^3+\ldots+2^{100}\) chia hết cho 5 và 31.
Câu a:
125\(^5\) + 4.5\(^{12}\)
= 125\(^5\) + 4.(5\(^3\))\(^4\)
= 125\(^5\) + 4.125\(^4\)
= 125\(^4\).(125 + 4)
= 125\(^4\).129 ⋮ 129 (đpcm)
a: \(125^5+4\cdot5^{12}\)
\(=\left(5^3\right)^5+4\cdot5^{12}\)
\(=5^{15}+4\cdot5^{12}=5^{12}\left(5^3+4\right)=5^{12}\cdot129\) ⋮129
b: \(1+7+7^2+\cdots+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+\cdots+\left(7^{100}+7^{101}\right)\)
\(=\left(1+7\right)+7^2\left(1+7\right)+\cdots+7^{100}\left(1+7\right)\)
\(=8\left(1+7^2+\cdots+7^{100}\right)\) ⋮8
c: \(2+2^2+2^3+\cdots+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+\cdots+2^{97}\right)\) ⋮5
\(2+2^2+2^3+\cdots+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+\cdots+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+\cdots+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+\cdots+2^{96}\right)\) ⋮31
Câu b:
1 + 7+ 7 \(^2\) + ... + 7\(^{101}\)
Xét dãy số: 0; 1; 2;...; 101
Dãy số trên là dãy số cách đều với khoảng cách là:
1 - 0 = 1
Số số hạng của dãy số trên là:
(101 - 0) : 1+ 1 = 102 số
Vì 102 : 2 = 51
Vậy nhóm hai số hạng liên tiếp của tổng trên ta được:
(1+ 7) + (7\(^2\) + 7\(^3\)) + ...+(7\(^{100}\) + 7\(^{101}\))
= 8 + 7\(^2\).(1+ 7) + ...+ 7\(^{100}\).(1+ 7)
= 8 + 7\(^2\).8 + ... + 7\(^{100}\) .8
= 8.(1 + 7\(^2\) + ... + 7\(^{100}\)) ⋮ 8(đpcm)
Cho M =125^7 - 625^5 - 25^9 Chứng minh M chia hết cho 9
M = 1257 - 6255 - 259
M = ( 53 )7 - ( 54 )5 - ( 52 )9
M = 521 - 520 - 518
M = 518 . ( 53 - 52 - 1 )
M = 518 . 99
M = 518 . 9 . 11 \(⋮\)9
chứng tỏ rằng
\(\left(5^{61}+25^{31}+125^{21}\right)\) chia hết cho 31
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31
Chứng minh :125^7-625^5-25^9 chia hết cho 11