chứng minh 3^70+5^70 chia hết cho 34
chứng minh rằng 3^70+5^70 chia hết cho 34
Bài 1 Chứng minh rằng: 2^70 + 3^70 chia hết cho 13
Bài 2 : CMR 5^70 + 7^70 chia hết cho 12
Làm theo cách lớp 7 nhá
Bài 1:
+) Có: \(2^{12}\equiv1\left(mod13\right)\)
\(\left(2^{12}\right)^5\equiv1^5\equiv1\left(mod13\right)\)
=> \(2^{60}\cdot2^{10}\equiv1\cdot10\equiv10\left(mod13\right)\) (*)
+) Có: \(3^{12}\equiv1\left(mod13\right)\)
\(\left(3^{12}\right)^5\equiv1^5\equiv1\left(mod13\right)\)
\(\Rightarrow3^{60}\cdot3^{10}\equiv1\cdot3\equiv3\left(mod13\right)\) (**)
Từ (*); (**)
=> \(2^{70}+3^{70}\equiv10+3\equiv13\left(mod13\right)\)
hay \(2^{70}+3^{70}⋮13\left(đpcm\right)\)
Bài 2 : Làm tương tự '-,,,,
chứng minh: 1*2*3*4*5*......*70*(1+1/2+1/3+1/4+.....+1/70)Chia hết cho 284
chứng minh 270+370 chia hết cho 13
Ta có: an+bn=(a+b)(an-1-an-2b+...+bn-1) nên an+bn chia hết cho a+b
Áp dụng vào bài toán ta có: 270+370=(22)35+(32)35=435+935 chia hết cho 4+9=13 (đpcm)
bạn Trà My: mik vẫn chưa hiểu chỗ tại sao 435+935 lại chia hết cho 4+9=13?
Cho A=70!(1+1\2+1\3+...+1\70) chứng minh A chia hết cho 1998
chứng minh rằng:
a,20^15-1 chia hết cho 11.31.61
b,2^9+2^99 chia hết cho 100
c,2^70+3^70 chia hết cho 13
chứng minh rằng : 270 + 370 chia hết cho 13
chứng minh rằng: 270 + 370 chia hết cho 13
270 + 370 = (22)35 + (32)35 = 435 + 935 chia hết cho 4 + 9 = 13
chứng minh rằng
\(^{2^{70}+3^{70}}\) chia hết cho 13
Ta có :
270 + 370 = (22)35 + (32)35 = 435 + 935
\(\Rightarrow\) 435 + 935 \(⋮\) 4+9
\(\Rightarrow\) 435 + 935 \(⋮\) 13
hay 270 + 370 \(⋮\) 13
Theo đề ta có :
270 + 370 = (22)35 + (32)35 = 435 + 935
<=> 435 + 935 chia hết cho 4 + 9 (do 435 chia hết cho 4 và 935 chia hết cho 9)
<=> 435 + 935 chia hết cho 13 (do 4 + 9 = 13)
Vậy 270 + 370 chia hết cho 13 (ĐPCM)