Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Lộc
Xem chi tiết
Trần Lục Anh
Xem chi tiết
hoang ngoc anh
28 tháng 9 2017 lúc 18:02

cậu làm cái này như kiểu là hoá đấy chứ

Phạm Hoàng KhánhTrang
Xem chi tiết
Thinhdc6a5
3 tháng 12 2016 lúc 8:50

S=1+3+3^2+3^3+...+3^99

3S=3+3^2+3^3+3^4+...+3^99+3^100

3S-S=3^100-1

\(\Rightarrow\)2S=3^100-1

\(\Rightarrow\)2S+1=3^100-1+1=3^100.Vì 3^100 là lũy thừa của 3 mà 3^100=2S+1

Vậy 2S+1 là lũy thừa của 3

K ĐÚNG CHO MÌNH NHA.

kudo shinichi
Xem chi tiết
com com
4 tháng 12 2017 lúc 10:18

S =1+3+32+33+…+399

3S =3+32+33+…+3100

3S-S=3100-1

2S=3100-1

2S+1=3100

Chứng tỏ 2S +1  là luỹ thừa của 3

Edogawa Conan
Xem chi tiết
leminhqk0
5 tháng 10 2017 lúc 9:34

S= 1+3+3^2+3^3+...+3^99

3S= 3+3^2+3^3+...+3^99+3^100

3S-S= (3+3^2+3^3+...+3^100)-(1+3+3^2+3^3+...+3^99)

2S= 3^100-1

2S+1 => 3^100-1+1 => 3^100

Vậy 2S+1 là luỹ thừa cơ số 3

Đặt Tên Chi
Xem chi tiết
Nguyễn Ngọc Minh Tâm
25 tháng 12 2015 lúc 13:59

 4= 30+31(làm ra nháp)

S= 3+32+33+...+3100

S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)

S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)

S=3x4+3^3x4+3^5x4+...+3^99x4

S=4x(3+3^3+3^5+...+3^99)

=> S chia hết cho 4.

 

 

Đỗ Tiến Mạnh
22 tháng 3 2021 lúc 22:39

Đặt Tên Chi

Tìm kiếm

Báo cáo

Đánh dấu

24 tháng 12 2015 lúc 20:28

Cho S=3+32+33+........+3100

a, Chứng minh rằng S chia hết cho 4.

b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3

Toán lớp 6

Khách vãng lai đã xóa
Tô Ngọc Huyền
Xem chi tiết
Nguyễn Thanh Hằng
25 tháng 5 2017 lúc 17:51

Ta có :

\(S=1+3+3^2+3^3+..........+3^{99}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+...................+3^{99}+3^{100}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+............+3^{100}\right)-\left(1+3+3^2+..........+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)

\(\Rightarrow2S+1\) là lũy thừa của \(3\)

Trương Khánh Phương
Xem chi tiết
FL.Han_
5 tháng 10 2020 lúc 20:28

Ta có: \(S=1+3+3^2+...+3^{99}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3S-S=\left(3+3^2+...+3^{100}\right)-\left(1+3+...+3^{99}\right)\)

\(\Leftrightarrow2S=3^{100}-1\)

Ta có: \(2S+1=3^{100}-1+1=3^{100}\)

=> đpcm

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
5 tháng 10 2020 lúc 20:35

S = 1 + 3 + 32 + 33 + ... + 399

=> 3S = 3( 1 + 3 + 32 + 33 + ... + 399 )

           = 3 + 32 + 33 + ... + 3100

=> 2S = 3S - S

           = 3 + 32 + 33 + ... + 3100 - ( 1 + 3 + 32 + 33 + ... + 399 )

           = 3 + 32 + 33 + ... + 3100 - 1 - 3 - 32 - 33 - ... - 399 

           = 3100 - 1

=> 2S + 1 = 3100 - 1 + 1 = 3100

=> đpcm

Khách vãng lai đã xóa
Tiểu Thư Họ Đinh
Xem chi tiết
Dương Hoàng Anh Văn ( Te...
23 tháng 6 2017 lúc 13:13

2S+1 là lũy thừa của 3

Tiểu Thư Họ Đinh
23 tháng 6 2017 lúc 14:18

trình bày ra mà kết quả cũng ko đúng

Hanh NH
10 tháng 10 2017 lúc 19:53

S =1+3+32+33+…+399

3S =3+32+33+…+3100

3S-S=3100-1

2S=3100-1

2S+1=3100

Chứng tỏ 2S +1  là luỹ thừa của