Chứng minh rằng: Hai đường thẳng vuông góc với nhau thì song song với nhau :))
Chế độ HARD CORD :)
a) Chứng minh rằng hai tia phân giác của hai góc nhọn hoặc hai góc tù có hai cặp cạnh tương ứng song song thì chúng song song với nhau.
b) Cho đường thẳng m vuông góc với đường thẳng n, đường thẳng p không vuông góc với n. Chứng minh p cắt n.
Chứng minh định lý hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ 3 thì chúng song song với nhau
Chứng minh định lý hai đường thẳng phân biệt cùng song song với một đường thẳng thứ 3 thì chúng song song với nhau
Chứng minh định lý một đường thẳng vuông góc với một ttrong hai đường thẳng song song thì chúng song song với đường thẳng kia
* Chú ý :
Có thể vẽ hình, Ghi GT và KL hoặc ko cũng được
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
ap sung ngay trong sach giao khoa ay doc lai di
Chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của hai góc trong cùng phía vuông góc với nhau.
Vẽ đường thẳng a//b vẽ c cắt a,b tại lần lượt hai điểm A, B( bạn tự vẽ hình ra nhé)
Vì a//b nên ta có:
aAB + bBc = 180 độ ( hai góc trong cùng phía)
Lại có:
Tia phân giác của aAb = 1/2 aAb
Tia phân giác của bBc = 1/2 bBc
=>1/2 aAb +1/2 bBc =1/2(aAb + bBc)
= 1/2 . 180độ
= 90 độ
Vì góc tạo bởi hai tia phân giác của cặp óc trong cùng phía bằng 90 độ nên chúng vuông góc với nhau
chứng minh rằng hai tia phân giác của hai góc có cạnh tương ứng song song thì song song với nhau hoặc cùng thuộc một đường thẳng hoặc vuông góc với nhau....các bạn giúp mình nhé'''
Chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của cặp góc trong cùng phía vuông góc với nhau
chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của cặp góc trong cùng phía vuông góc với nhau
ta có: a//b => \(\widehat{A}+\widehat{B}=180^o\)
\(\widehat{A}_1+\widehat{B}_1=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}=\frac{\widehat{A}+\widehat{B}}{2}=\frac{180^o}{2}=90^o\)
\(\widehat{O}=180^o-\left(\widehat{A_1}+\widehat{B_1}\right)=180^o-90^o=90^o\)
=> AO_|_BO tại O
chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của cặp góc trong cùng phia vuông góc với nhau
tư đi mà vẽ hình
chứng minh 2 cặp góc đồng vị bằng nhau
=>2 tia phân giác cũng tạo nên 2 cặp góc đồng vị bầng nhau
=>nếu .....(DCCM)
Chứng minh rằng nếu một đường thẳng cắt hai đường thẳng song song thì hai tia phân giác của các cặp góc trong cùng phía vuông goác với nhau.
Giả sử đường thẳng AB // CD cắt đường thẳng EF tại E và F
Ta có: ∠BEF + ∠EFD = 180o (hai góc trong cùng phía)
+) Do EK là tia phân giác của góc ∠ BEF nên:
∠E1 = 1/2 .∠ (BEF) (1)
+) Do FK là tia phân giác của góc EFD nên :
∠F1 = 1/2 .∠EFD (2)
Từ (1) và (2) suy ra:
∠E1 +∠F1 =1/2 .(∠BEF + ∠EFD ) = 1/2 . 180º = 90º ( ∠BEF + ∠EFD = 180º hai góc trong cùng phía)
Trong ΔEKF,ta có:
∠EKF = 180o-(∠E1 + ∠F1) = 180o-90o=90o
Vậy EK ⊥FK
Chứng minh rằng Nếu 2 đường thẳng cùng vuông góc với đường thẳng thứ 3 thì song song với nhau