Tim n thuoc N* sao cho A= \(\frac{1.3.5.7...\left(2n-1\right)}{n^n}\) là một số nguyên, trong đó tử số của A là tích của n số tự nhiên lẻ đầu tiên.
Tìm n thuộc N* sao cho A=1.3.5.7....(2n+1)/n^n là 1 số nguyên trong đó tử số của A là tích của n số tự nhiên lẻ đầu tiên
tìm n thuộc N* sao cho A = 1.3.5.7...(2n-1)/n^n là 1 số nguyên, trong đó tử của A là tích của n số lẻ đầu tiên
tìm n thuộc N* sao cho A=1*3*5*7*.....*(2*n-1)/n^n là một số nguyên, trong đó tử số của A là tích của n số tự nhiên lẻ đầu tiên
Tìm n thuộc N* sao cho A=\(\frac{1.3.5.7...\left(2n-1\right)}{n^n}+2n\) là số nguyên tố
Cho \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)là tổng của n số chính phương đầu tiên.
Khi đó tổng 10 số chính phương đầu tiên là
nguyên tử của nguyên tố a có tổng số hạt là 48 trong đó số hạt
Nguyên tử của một nguyên tố A có tổng số hạt là 48
\(2p+n=48\left(1\right)\)
Số hạt mang điện gấp 2 lần số hạt không mang điện
\(2p=2n\left(2\right)\)
\(\left(1\right),\left(2\right):p=e=n=16\)
Cho \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) là tổng của n số chính phương đầu tiên. Khi đó tổng của 10 số chính phương đầu tiên là ...?
AI nhanh được tick, giải chi tiết nhé!
Tổng 10 số chính phương đầu tiên là :
\(1^2+2^2+3^2+...+10^2=\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Vậy tổng của 10 số chính phương đầu tiên là 385
Chứng minh rằng : Với mọi n thuộc N sao
a ) Tổng của n số tự nhiên lẻ đầu tiên là số chính phương
b ) Tổng của n số tự nhiên chẵn khác 0 đầu tiên không là số chính phương
a. tìm số nguyên tố P biết p+1 là tổng của n số nguyên dương đầu tiên, trong đó n là một số tự nhiên nào đó.
b.chứng minh rằng số B=1+22+24+...+22000 chia hết cho 21
a, Tham Khảo: tìm số nguyên tố p biết p+1 là tổng của n số nguyên dương đầu tiên, trong đó n là một số tự nhiên nào đó câu hỏi 1272037 - hoidap247.com
\(b,B=\left(1+2^2+2^4\right)+\left(2^6+2^8+2^{10}\right)+...+\left(2^{1996}+2^{1998}+2^{2000}\right)\\ B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{1996}\left(1+2^2+2^4\right)\\ B=\left(1+2^2+2^4\right)\left(1+2^6+...+2^{1996}\right)\\ B=21\left(1+2^6+...+2^{1996}\right)⋮21\)
a) nếu P = 2 thì P + 1 = 2 + 1 = 3 = 1 + 2 (chọn)
nếu P = 3 thì P + 1 = 3 + 1 = 4 = 1 + 2 + 1 (loại)
xét : ta có thể phân các tổng lớn hơn 3 thành tổng của 3 số hạng khác nhau nhưng số 4 thì không thể phân thành 3 số nguyên dương khác nhau
vì số 3 cũng không thể nên nhưng khác với số 4 là nó chỉ có thể phân thành tổng của 2 hay 1 số nguyên dương khác nhau
=>n = 2 và P = 2
cái này là mk tự nghĩ ra thôi nha , có gì sai mong mng chỉ bảo