B=2/11x15 2/15x19 2/19x23 ... 2/51x55
B=2/11x15+2/15x19+2/19x23+...+2/51x55
B=2/11x15+2/15x19+2/19x23+...+2/51x55
=>2B=4/11x15+4/15x19+4/19x23+...+4/51x55
=1/11-1/15+1/15-1/19+...+1/51-1/55
=1/11-1/55
=5/55-1/55
=4/55
=>B=4/55 : 2
=4/55.1/2
=2/55
\(B=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)
C=2/11x15+1/15x19+2/19x23+......+2/51x55
\(C=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.13}+...+\frac{2}{51.55}\)
\(2.C=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)
\(2.C=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\)
\(2.C=\frac{1}{11}-\frac{1}{55}\)
\(2.C=\frac{5}{55}-\frac{1}{55}=\frac{4}{55}\)
\(C=\frac{4}{55}:2=\frac{4}{55}.\frac{1}{2}=\frac{2}{55}\)
Vậy \(C=\frac{2}{55}\)
A= 2/11x15+2/15x19+2/19x23+...+2/51x55
B=(-5/3)x11/2x(1/3+1)
tính tích AxB
ta có:
A=2/4(4/11.15+4/15.19+4/19.23+.....+4/51.55)
A=2/4(1/11-1/15+1/15-1/19+1/19-1/23+....+1/51-1/55)
A=2/4(1/11-1/55)
A=2/4*4/55=8/220=2/55
B=-55/3/*8/3=-165/24=-55/8
suy ra A*B=2/55*(-55/8)=-1/4
4/3x7 - 4/7x11+4/11x15 - 4/15x19 + 4/19x23 - 4/23x27
SỬa đề: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{23\cdot27}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\)
=1/3-1/27
=8/27
Tính nhanh A = 4/3x7 + 4/7x11 + 4/11x15 + 4/15x19 + 4/19x23 + 4/23x27
\(A=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+\dfrac{4}{15.19}+\dfrac{4}{19.23}+\dfrac{4}{23.27}\)(Dấu . là dấu nhân)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\)
\(=\dfrac{1}{3}-\dfrac{1}{27}\)
\(=\dfrac{9}{27}-\dfrac{1}{27}\)
\(=\dfrac{8}{27}\)
A = 4/3x7 + 4/7x11+ 4/11x15 + 4/15x19 + 4/19 x23 + 4/23 x 27
A = 1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23 -1/27
A = 1/3 - 1/27
A = 8/27
Cho A=2:[11x15]+2:[15x19]+...+2:[51x55]
B=[-[5:3]]X11:2X[11:2+1]
Tính tích AXB và chứng tỏ rằng số tự nhiên có dạng: abcabc chia hết cho ít nhất 3 số ng tố
Tính nhanh
4/3x7 - 4/7x11+4/11x15 - 4/15x19 + 4/19x23 - 4/23x27
giúp mình với !!!!!!!!!!!
tính nhanh
\(a.\frac{4}{3x7}+\frac{4}{7x11}+\frac{4}{11x15}+\frac{4}{15x19}+\frac{4}{19x23}+\frac{4}{23xx27}\)
Ta có :
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}==\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
Đặt \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}++\frac{4}{19.23}+\frac{4}{23.27}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(A=\frac{1}{3}-\frac{1}{27}\)
\(A=\frac{8}{27}\)
\(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+\frac{4}{15\cdot19}+\frac{4}{19\cdot23}+\frac{4}{23.27}\)
\(=\frac{4}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{4}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{4}{4}\cdot\frac{8}{27}=\frac{8}{27}\)
Bài 2 Tính tổng
a, 2/3 + 2/6 + 2/12 + 2/24 + 2/48 + 2/96 + 2/192
b, 1/2 + 1/4 + 1/8 + 1/18 + 1/32 + 1/64 + 1/128 + 1/256
c, 4/3x7 + 4/7x11 + 4/11x15 + 4/15x19 + 4/19x23 + 4/23x27
d, 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)
\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)
\(\frac{1}{4}xA=\frac{127}{384}\)
\(A=\frac{127}{384}:\frac{1}{4}\)
\(A=\frac{127}{96}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)