cho tam giác ABC vuông tại A , M là 1 điiểm thuộc cạnh AC ( M # A , C ). Đường tròn đường kính Mc cắt BC tại N và cắt tia BM tại I . CMR
a) ABNM và ABCI là các tứ giác nội tiếp .
b) NM là tia phân giác góc ANI
cho tam giác ABC vuông tại A , M là 1 điiểm thuộc cạnh AC ( M # A , C ). Đường tròn đường kính Mc cắt BC tại N và cắt tia BM tại I . CMR
a) ABNM và ABCI là các tứ giác nội tiếp .
b) NM là tia phân giác góc ANI
Cho tam giác ABC vuông cân tại B có trung tuyến BM. Gọi D là 1 điiểm bất kì thuộc cạnh AC. Kẻ AH,CK vuông góc BD ( H, K thuộc đường thẳng BD)
Chứng minh a) BH=CK
b) tam giác MHK vuông cân
Cho tam giác ABC cân tại A . Lấy điiểm M thuộc cạnh AB , điểm N thuộc cạnh AC sao cho BM=CN . gọi O là giao điểm của BN và CM . chứng minh rằng ;
a)tam giac AMN cân từ đó suy ra MN // BC
b) tam giác BOM = tam giác CNO
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông với BC và MH = HB.
CMR: AH là tia phân giác góc A
Cho tam giác ABC có M là trung điểm của BC và AM là tia phân giác của tam giác ABC. CMR: Tam giác ABC là tam giác cân
Cho tam giác ABC vuông tại A (AB<AC) Tia phân giác của góc ABC cắt cạnh AC tại D. Từ D kẻ DH vuông góc với AC (H thuộc AC).
A/ Chứng minh: tam giác ABD= tam giác HBD.
B/ Đường thẳng HD cắt đường thẳng BA tại K. Chứng minh: Tam giác BKC.
C/ Gọi M là trung điểm của KC. Chứng minh 3 điểm B, D, M thẳng hàng.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
gócHBK chung
=>ΔBHK=ΔBAC
=>BK=BC
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác
=>B,D,M thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, BC = 10cm, điểm D thuộc AC sao cho DC = 3cm. Qua D kẻ đường thẳng vuông góc với AC và cắt cạnh BC tại M. Đường thẳng vuông góc với BC tại M cắt BA tại E. Chứng minh:
a) tam giác ABC đồng dạng với tam giác MDC. Tính độ dài MD, MC.
b) tam giác ABC đồng dạng với tam giác MBE và BE.BA = BM.BC
c) góc BMA= góc BEC
Bài 2: Cho ABC có AB = 14cm, AC = 10cm, CB = 12cm. Đường phân giác của C cắt cạnh BC ở D.
a) Tính độ dài các đoạn thẳng BD, DC.
b) Tính tỉ số diện tích của ABD và !ACD.
c) Qua D kẻ đường thẳng song song với AB cắt cạnh AC ở E. Tính DE, AE, EC
Ai đó làm ơn làm Phước giúp mình bài 1 với câu c bài 2 với ạ
Xin mọi người đó😭
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC , H thuộc cạnh BC sao cho MH vuông góc BC và MH = HB . Chứng mihn AH là tia phân giác của góc A
Kẻ \(HI\perp AB,HK\perp AC\)
Ta có : \(\widehat{HMK}=\widehat{B}\) ( cùng phụ với \(\widehat{C}\) )
Xét \(\Delta HKM\) và \(\Delta HIB\)có :
\(\widehat{K}=\widehat{I}=90^o\)
\(HM=HB\left(gt\right)\)
\(\widehat{HMK}=\widehat{B}\left(cmt\right)\)
Suy ra \(\Delta HKM=\Delta HIB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow HK=HI\) ( 2 cạnh tương ứng )
Xét \(\Delta HIA\) và \(\Delta HKA\)có :
\(\widehat{I}=\widehat{K}=90^o\)
HA : cạnh chung
HI = HK ( cmt)
Suy ra \(\Delta HIA=\Delta HKA\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{A}_1=\widehat{A}_2\)
Do đó AH là tia phân giác của góc A
Chúc bạn học tốt !!!
Cho tam giác ABC vuông tại A( AB < AC) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông góc BC và MH=HB. Chứng minh rằng AH là tia phân giác góc A
Cho tam giác vuông ABC ( vuông tại A ) , cạnh AB bằng 50 cm , cạnh AC bằng 40 cm . M là một điểm thuộc cạnh AB sao cho MB = 3MA , từ M kẻ thẳng đường song song với cạnh AC cắt BC tại điểm N
a, Tính diện tích tam giác ABC
b, Tình diện tích hình thang AMNC