Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Minh Tuấn Phạm
Xem chi tiết
Đàm Thị Minh Hương
14 tháng 7 2018 lúc 9:32

\(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\\ \)\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b. 

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Rightarrow1-\frac{3}{\sqrt{x}+1}\ge1-3=-2\Rightarrow P\ge-2\)

Dấu "=" xảy ra <=> x=0

vậy Min (P) = -2 <=> x=0

Dương Lam Hàng
14 tháng 7 2018 lúc 9:38

Rút gọn: \(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

        \(=\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

          \(=\frac{1}{\sqrt{x}+1}:\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

           \(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

            \(=\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

Dương Lam Hàng
14 tháng 7 2018 lúc 9:41

b) \(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)

\(\Rightarrow1-\frac{3}{\sqrt{x}+1}\ge1-3\Leftrightarrow P\ge-2\)

Vậy Pmin = -2 khi và chỉ khi x = 0

Huỳnh Diệu Bảo
Xem chi tiết
BangBangTan
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Phạm Thị Thùy Linh
11 tháng 7 2019 lúc 20:47

\(đkxđ\Leftrightarrow x\ge4\)

\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)

\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)

\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)

Dùng bảng xét dấu nha

phan thị minh anh
Xem chi tiết
Isolde Moria
3 tháng 10 2016 lúc 12:58

Khai triển :

\(\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-3+3}{\sqrt{x}+3}=1-\frac{3}{\sqrt{x}+3}\)

Ta có 

\(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+3\ge3\)

\(\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\)

\(\Rightarrow-\frac{3}{\sqrt{x}+3}\ge1\)

\(\Rightarrow1-\frac{3}{\sqrt{x}+3}\ge0\)

Dấu " = " xảy ra khi x = 0

Vậy biểu thức đạt giá trị nhỏ nhất là 0 khi x = 0

LIVERPOOL
Xem chi tiết
BoY
Xem chi tiết
Bestzata
20 tháng 10 2020 lúc 21:29

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN

Khách vãng lai đã xóa
Nguyễn Thành Đạt
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
28 tháng 8 2018 lúc 16:07

\(ĐKXĐ:\)tự làm nhé

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\sqrt{x}-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{1+\sqrt{x}}{\sqrt{x}-3}\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right)\times\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\frac{-3}{\sqrt{x}+3}\)

P/s tham khảo