Hai số nguyên tố cùng nhau là 2 số có .....ước chung
Hai số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất là
Hai số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất là 1
Hai số nguyên tố cùng nhau là 2 số có ............ ước chung
hai số nguyên tố cùng nhao là 2 số có 1 ước chung
Cho a và b là 2 số nguyên tố cùng nhau.CMR: 11a+2b và 18a+5b là hai số nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b \(⋮\) d và 18a +5b \(⋮\) d
=> 18.(11a + 2b) \(⋮\) d và 11(18a + 5b) \(⋮\) d
=> 11(18a + 5b) - 18.(11a + 2b) \(⋮\) d => 19b \(⋮\) d => 19 \(⋮\) d hoặc b \(⋮\) d
=> d là ước của 19 hoặc d là ước của b (1)
tương tự ta cũng có 5.(11a + 2b) \(⋮\) d và 2(18a + 5b) \(⋮\)d
=> 5.(11a + 2b) - 2(18a + 5b) \(⋮\)d => 19a \(⋮\)d
=> 19 \(⋮\) d hoặc a \(⋮\) d
=> d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b
=> d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng hai số 11a + 2b hoặc 18a + 5b nguyên tố cùng nhau hoặc có một ước chung là 19
cho a và b là hai số nguyên tố cùng nhau. Chứng minh hai số 2a+7b và 3a+5b hoặc là hai số nguyên tố cùng nhau hoặc là có một ước chung là 11
Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng hai số 11a + 2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung19
cho hai số nguyên tố cùng nhau a và b.Chứng tỏ rằng hai số 13a+4b và 15a+7b hoặc số nguyên tố cùng nhau hoặc có một ước chung là 31
Đặt A=13a+4b => 15A=195a+60b (1)
B=15a+7b => 13B=195a+91b (2)
Gọi ƯCLN(A;B) là d
=> 13B-15A chia hết cho d
Từ (1)(2) => (195a+91b)-(195a+60b) chia hết cho d
=> 31b chia hết cho d
=> d thuộc Ư(31b)
=> d thuộc {1;31;b;31b}
Vì (A;B)=1 nên d khác b và 31b
=> d thuộc {1;31} => ĐPCM
Thấy đúng thì k cho mình nha
cho a:b nguyên tố cùng nhau.CMR hai số 11a + 2b và 18a + 5b là hai số nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5
=> 11a + 2b chia hết cho d
=> 18a + 5b chia hết cho d
=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d
=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d
=> 19b chia hết cho d ( 1 )
=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d
=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d
=> 19a chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d
=> d thuộc Ư(19)
=> d thuộc { 1 ; 19 }
Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b
=> d = 19.
Cho hai số nguyên tố cùng nhau a và b. Chứng minh rằng hai số 11a + 2b và 18a + 5b thì hoặc nguyên tố cùng nhau hoặc có một ước chung là 19