Cho tam giác ABC, góc A = 60 độ, tia phân giác của góc B và C cắt cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F. Chứng minh rằng : OD = OE
Cho tam giác ABC, góc A = 60 độ, tia phân giác của góc B và C cắt cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F. Chứng minh rằng :
a) OD=OE=OF
b) Tam giác DEF là tam giác đều
k đúng mik nếu các bạn có thể nha!Cảm ơn các bạn^_^
Ta lại có: góc BOC= góc EOD=120độ và góc EOD+góc DOC=180độ(theo tính chất của hai góc kề bù)
=>góc DOC=180độ-góc EOD
=>góc DOC=180độ-120độ=60độ
mà góc DOC=góc EOB(đối đỉnh)
nên góc DOC=góc EOB=60độ
*,Xét tam giác EOB và tam giác FOB có:
góc EBO= góc FBO(gt), BO:cạnh chung, góc EOB=góc FOB(=60độ)
Do đó tam giác EOB=tam giác FOB(g.c.g)
=>OE=OF(cặp cạnh tương ứng)(1)
chứng minh tương tự sẽ chứng minh được tam giác DOC= tam giác FOC
=> OD=OF(cặp cạnh tương ứng)(2)
từ (1) và (2) suy ra OE=OD=OF(đpcm)
b, Xét tam giác EOF, tam giác DOFvà tam giác DOE có:OE=OD=OF(cmt); góc EOF=góc DOF=góc DOE;OF=OE(cmt)do đó tam giác EOF= tam giác DOF= tam giác DOEdo đó EF=DF=ED(ba cạnh tương ứng)=> tam giác EDF đều(đpcm)
Cho tam giác ABC, góc A = 60 độ, tia phân giác của góc B và C cắt cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F. Chứng minh rằng :
a) OD=OE=OF
b) Tam giác DEF là tam giác đều
Cho tam giác ABC, góc A = 60 độ. Tia phân giác của góc B và góc C cắt các cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F
a) Tính góc BOC
b) Chứng minh tam giác OEB = tam giác OFB
c) Chứng minh OD = OE = OF
d) Chứng minh tam giác DEF là tam giác đều
a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ
a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 60 (gt)
=> góc ABC + góc ACB = 180 - 60 = 120 (1)
BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)
CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)
=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)
=> góc DBC + góc ECB = 1/2*120 = 60
xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)
=> góc BOC = 180 - 60 = 120
b, góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)
=> góc BOE = 180 - 120 = 60 (2)
OF là phân giác của góc BOC (gt)
=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)
=> góc BOF = 1/2*120 = 60 = góc FOC (3)
(2)(3) => góc BOF = góc BOE
xét tam giác BOF và tam giác BOE có : BO chung
góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)
=> tam giác BOF = góc BOE (g-c-g)
c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)
=> góc DOC = 60
góc FOC = 60 (câu b)
=> góc DOC = góc FOC
xét tam giác DOC và tam giác FOC có : OC chung
góc FCO = góc DCO do OC là phân giác của góc BCA (gt)
=> tam giác DOC = tam giác FOC (g-c-g)
=> OD = OF (Đn)
tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)
=> OE = OF = OD
d, góc EOB + góc BOF = góc EOF
mà góc EOB = góc BOF = 60
=> góc EOF = 60.2 = 120 (4)
góc FOC + góc OCD = góc FOD
mà góc FOC = góc OCD = 60
=> góc FOD = 60.2 = 120 (5)
(4)(5) => góc FOD = góc EOF = 120
xét tam giác EOF và tam giác DOF có : OF chung
OE = OD (Câu c)
=> tam giác EOF = tam giác DOF (c-g-c)
=> EF = DF (đn)
=> tam giác EFD cân tại F (đn) (6)
OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2
mà góc EOF = 120 (cmt)
=> góc EFO = (180 - 120) : 2 = 30
tương tự cm được góc OFD = 30
mà góc OFD + góc EFO = góc EFD
=> góc EFD = 30 + 30 = 60 và (6)
=> tam giác EFD đều (tc)
Cho tam giác ABC, góc A = 60 độ. Tia phân giác của góc B và góc C cắt các cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F
a) Tính góc BOC
b) Chứng minh tam giác OEB = tam giác OFB
c) Chứng minh OD = OE = OF
d) Chứng minh tam giác DEF là tam giác đều
Cho tam giác ABC, góc A = 60 độ. Tia phân giác của góc B và góc C cắt các cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F
a) Tính góc BOC
b) Chứng minh tam giác OEB = tam giác OFB
c) Chứng minh OD = OE = OF
d) Chứng minh tam giác DEF là tam giác đều
Cho tam giác ABC: Góc A= 60 độ.Tia phân giác của góc B và góc C cắt các cạnh đối diện ở C và E. BC và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F. C/m:
a) Góc BOC=120 độ
b) OD=OE=OF
c) Tam giác DEF đều.
Cho tam giác ABC có góc A bằng 60 độ.tia phân giác của góc B và góc C cắt các cạnh đối diện ở D và E,BD và CE cắt ở O tia phân giác của góc BOC và cắt BC ở F.chứng minh rằng.
a,OD=OE=OF
b,tam giác DEF là tam giác đều
B1 : Cho tam giác ABC có góc A = 60 độ . Tia phân giác trong góc B và góc C cắt Các cạnh đối diện tại D và E , BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng Minh Rằng
a, OD=OE=OF
b, Tam giác DEF là tam giác đều
1.cho tam giacABC,góc A=60 độ.Tia phân giác góc B,C cắt cạnh đối diện tại D,E BD và CE cắt nhau ở O.Tia phân giác góc BOC cắt BC ở F .Chứng minh:
a,OD=OE=OF
b,tam giác DÈ là tam giác đều
2,Cho tam giác ABC.Các tia phân giác AD,BE và CF cắt nhau ở I.chứng minh nếu ae=à thì tam giác ABC cân ở A