So sánh
\(\left(\frac{-1}{8}\right)^{100}\)và \(\left(\frac{-1}{4}\right)^{200}\)
\(\left(\frac{1}{8}\right)^{100}và\left(\frac{-1}{4}\right)^{200}\)các bạn giúp mk với. đề bài là so sánh đó. cố giúp mk đi
ta có:1/8^100
-1/4^200=(-1/4^2)^100=1/16^100
=>1/8^100 >1/16^100
=>1/8^100 >-1/4^200
So sánh: \(\left(-\frac{1}{8}\right)^{180}\) và \(\left(-\frac{1}{4}\right)^{200}\)
ta có:\(\left(-\frac{1}{8}\right)^{180}=\left(\frac{1}{8}\right)^{180}=\left(\frac{1}{4}\right)^{2^{180}}=\left(\frac{1}{4}\right)^{360}\)
ta có :\(\left(-\frac{1}{4}\right)^{200}=\left(\frac{1}{4}\right)^{200}\)
=>(1/4)^360<(1/4)^200
Vậy : (-1/8)^180 < ( -1/4)^200
Ta có: \(\left(\frac{-1}{8}\right)^{180}=\frac{-1^{180}}{8^{180}}=\frac{1}{8^{180}}\)
\(\left(\frac{-1}{4}\right)^{200}=\frac{-1^{200}}{4^{200}}=\frac{1}{4^{200}}\)
Suy ra để so sánh \(\left(\frac{-1}{8}\right)^{180}\)và\(\left(\frac{-1}{4}\right)^{200}\)thì ta chỉ cần so sánh 8180 và 4200
Ta có: 8180=(23)180=23.180=2540
4200=(22)200=22.200=2400
Ta thấy 2=2 nhưng 540>400 suy ra 8180>4200 suy ra \(\frac{1}{8^{180}}< \frac{1}{4^{200}}\)suy ra \(\left(\frac{-1}{8}\right)^{180}< \left(\frac{-1}{4}\right)^{200}\)
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
so sánh A và \(\frac{-1}{2}\)có A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
Cho M =\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
So sánh: M và \(-\frac{1}{2}\)
M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))
=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))
=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))
=-(\(\frac{1}{100}.\frac{1}{2}\))
=\(\frac{-1}{200}\)
So sánh \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\) VÀ \(-\frac{1}{2}\)
SO SÁNH : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\) và \(-\frac{1}{2}\)
Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
So sánh x và y biết:
\(x=\left(1-\frac{1}{\sqrt{4}}\right).\left(1-\frac{1}{\sqrt{16}}\right).\left(1-\frac{1}{\sqrt{36}}\right).\left(1-\frac{1}{\sqrt{64}}\right).\left(1-\frac{1}{\sqrt{100}}\right)\)và y = \(\sqrt{0,1}\)
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x
So Sánh M=\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\) với \(\frac{11}{19}\)
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19