Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Tài
Xem chi tiết
Tu Pham Van
Xem chi tiết
nguyễn thị lan trinh
Xem chi tiết
Trịnh Xuân Tuấn
30 tháng 5 2015 lúc 8:31

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

\(\Rightarrow\frac{5a+5b}{5b}=\frac{5b\left(k+1\right)}{5b}=k+1\)

\(\frac{c^2+cd}{cd}=\frac{k^2d^2+kd^2}{kd^2}=\frac{kd^2\left(k+1\right)}{kd^2}=k+1\)

\(\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
 

✓ ℍɠŞ_ŦƦùM $₦G ✓
30 tháng 5 2015 lúc 8:32

\(\)\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1\)

\(\frac{c^2+cd}{cd}=\frac{c^2}{cd}+\frac{cd}{cd}=\frac{c}{d}+1\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)

\(\Rightarrowđpcm\)

giang ho dai ca
30 tháng 5 2015 lúc 8:33

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a= b.k ; c= d.k

\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1=\frac{b.k}{b}+1=k+1\left(1\right)\)

\(\frac{c^2+cd}{cd}=\frac{\left(d.k\right)^2}{cd}+\frac{cd}{cd}=\frac{d^2.k^2}{d.k.d}+1=\frac{d.k}{d}+1=k+1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)

Trần Khởi My
Xem chi tiết
Nguyễn Ngô Ngọc Vân
Xem chi tiết
ngohuunghia
16 tháng 4 2017 lúc 20:34

a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)

=>a+b/a-b=c+d/c-d

b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)

c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2

phùng lê minh anh
Xem chi tiết
Minh Triều
24 tháng 6 2015 lúc 11:50

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)

\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)

\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)

=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)

b)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)

=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Võ Đặng Quốc Thắng
Xem chi tiết
Nguyễn Minh An
Xem chi tiết
minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 21:36

d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)

\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)

Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)