cho tỉ lệ thức a/b=c/d chứng minh 5a+5b/5b=c^2+cd/cd
6) cho tỉ lệ thức a/b=c/d. chứng minh:
a) (5a+5b)/5b = ((c^2)+cd)/cd
b) (a^2)/(b^2)=(a^2-ac)/(b^2)-bd
cho tỉ lệ thức a/b=c/d chúng minh a, (5a + 5b)/5b =(c+cd)/cd
b, a2/b2 = (a-ac)/(b-bc)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
chứng minh:\(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{5b\left(k+1\right)}{5b}=k+1\)
\(\frac{c^2+cd}{cd}=\frac{k^2d^2+kd^2}{kd^2}=\frac{kd^2\left(k+1\right)}{kd^2}=k+1\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\)\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1\)
\(\frac{c^2+cd}{cd}=\frac{c^2}{cd}+\frac{cd}{cd}=\frac{c}{d}+1\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\Rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a= b.k ; c= d.k
\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1=\frac{b.k}{b}+1=k+1\left(1\right)\)
\(\frac{c^2+cd}{cd}=\frac{\left(d.k\right)^2}{cd}+\frac{cd}{cd}=\frac{d^2.k^2}{d.k.d}+1=\frac{d.k}{d}+1=k+1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
b) \(\frac{a^2}{b^2}=\frac{a^2-ac}{b^2-bd}\)
cho tỉ lệ thức a/b=c/d. chứng minh rằng
a) a+b/a-b = c+d/c-d
b) 5a + 2c/5b+2d =a-4c/b-4d
c ab/cd = (a+b)^2 /(c+d)^2
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
cho tỉ lệ thức a/b=c/d chưng minh rằng
a, 5a+2c/ 5b+2d =a-4c/b-4d
b,ab/cd=(a+b)2 / (c+d)2
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)
\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)
\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)
=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)
b)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
1)Cho tỉ lệ thức : a\b=c\d
C\Minh : 3a+2c\3b+2d=5a-3c\5b-3d
Mấy bn làm nhanh giúp mik nha "___" Tks tr
2)Cho tỉ lệ thức:a\b=c\d
C\Minh:
a)7a+9b\7a-9b=7c+9d\7c-9d
b)ab\cd=a^2-b^2\c^2-d^2
Tks nhìu :)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a) \(\dfrac{3a+5b}{2a-7b}=\dfrac{3c+5d}{2c-7d}\)
b) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
d)\(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)
\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)
Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)