Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh châu nguyễn
Xem chi tiết
Thanh Hoàng Thanh
16 tháng 2 2022 lúc 9:43

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:18

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

linh nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 20:06

a: Xét ΔEAD và ΔBAC có 

AE=AB

\(\widehat{EAD}=\widehat{BAC}\)

AD=AC

Do đó: ΔEAD=ΔBAC

Suy ra: ED=BC

b: Xét ΔACD có AC=AD

nên ΔACD cân tại A

Xét ΔABE có AB=AE
nên ΔABE cân tại A

Nguyễn Ngọc Hải Vy
Xem chi tiết
Đỗ Thụy Cát Tường
Xem chi tiết
Bảo Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:02

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

Thành Nhân Võ
Xem chi tiết
Thành Nhân Võ
Xem chi tiết
Thành Nhân Võ
Xem chi tiết
Ngô Ngọc Tâm Anh
15 tháng 12 2021 lúc 14:26

mình lấy ở mạng nha !

Ta có: AB=12BCAB=12BC(gt)

nên BM=AB

Xét ΔENM và ΔANB có 

EN=AN(gt)

ˆENM=ˆANBENM^=ANB^(hai góc đối đỉnh)

NM=NB(N là trung điểm của BM)

Do đó: ΔENM=ΔANB(c-g-c)

⇒EM=AB(hai cạnh tương ứng)

mà BM=AB(cmt)

nên EM=BM

hay EM=12BCEM=12BC(cmt)

Do đó: ΔEBC vuông tại E(Định lí)

⇒EB⊥EC

Xét ΔENB và ΔANM có

EN=AN(gt)

ˆENB=ˆANMENB^=ANM^(hai góc đối đỉnh)

BN=MN(N là trung điểm của BM)

Do đó: ΔENB=ΔANM(c-g-c)

ˆBEN=ˆMANBEN^=MAN^(hai góc tương ứng)

mà ˆBENBEN^ và ˆMANMAN^ là hai góc ở vị trí so le trong

nên EB//AM(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: EB⊥EC(cmt)

EB//AM(cmt)

Do đó: EC⊥AM(Định lí 2 từ vuông góc tới song song)

Ta có: MC=MB(M là trung điểm của CB)

mà MB=2⋅MNMB=2⋅MN(N là trung điểm của MB)

nên MC=2⋅MNMC=2⋅MN

hay 12MC+MC=CN12MC+MC=CN

⇔MC=23⋅CN⇔MC=23⋅CN

Ta có: AN=EN(gt)

mà A,N,E thẳng hàng

nên N là trung điểm của AE

Xét ΔACE có 

CN là đường trung tuyến ứng với cạnh AE(N là trung điểm của AE)