Cho tam giác ABC vuông tại A đường cao AH |,K lần lượt là trung điểm của AB,AC . CMR góc IHK = 90 ĐỘ
.Cho tam giác ABC vuông tại A có đường cao AH.Gọi I,K lần lượt là Trung điểm của AB,AC
a)Chứng minh tam giác IHA cân
b)Chứng minh góc IHK=90°
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I,K theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Góc IHK = 90 độ
b) Chu vi tam giác IHK = nửa chu vi tam giác ABC
a: Ta có: ΔAHB vuông tại H
mà HI là đường trung tuyến
nên HI=AI
Ta có: ΔAHC vuông tại H
mà HK là đường trung tuyến
nên HK=AK
Xét ΔKAI và ΔKHI có
KA=KH
IA=IH
KI chung
Do đó: ΔKAI=ΔKHI
Suy ra: \(\widehat{IHK}=90^0\)
a) Ta có: ΔAHB vuông tại H (gt)
mà HI là đường trung tuyến (gt)
nên HI=AI
Ta có: ΔAHC vuông tại H
mà HK là đường trung tuyến
nên HK=AK
Xét ΔKAI và ΔKHI có
KA=KH
IA=IH
KI chung
Do đó: ΔKAI=ΔKHI
Suy ra: ˆIHK=900
b) Bạn sẽ chứng minh mỗi cạnh của tam giác IHK bằng nửa cạnh của tam giác ABC:
có I là trung điểm AB
=> IA=IB= 1/2 AB (1)
có K là trung điểm AC
=> KA=KC = 1/2 AC (2)
xét tam giác ABC => IK là đường trung bình (tự cm)
=> IK= 1/2 BC (tính chất) (3)
Từ (1)(2)(3) => IH + HK + IK = 1/2AB+1/2AC +1/2BC
==> Vậy cvi của tam giác IHK bằng một nửa cvi tam giác ABC
=====
studie.hard.today
cho tam giác ABC vuông tại A. đường cao AH. Gọi I,K là trung điểm của AB,AC.CMR: góc IHK=90 độ
cho tam giác ABC vuông tại A. đường cao AH. Gọi I,K là trung điểm của AB,AC.CMR: góc IHK=90 độ.
Ta có: ΔAHB vuông tại H
mà HI là đường trung tuyến
nên HI=AI
Ta có: ΔAHC vuông tại H
mà HK là đường trung tuyến
nên HK=AK
Xét ΔKAI và ΔKHI có
KA=KH
AI=HI
KI chung
Do đó: ΔKAI=ΔKHI
Suy ra: \(\widehat{KAI}=\widehat{HAI}=90^0\)
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Kẻ AH vuông góc với BC , kẻ các điểm D và E sao choAB là đường trung trực của đoạn thẳng HD . AC là đường trung trực của HE . DE cắt AB,AC lần lượt tại I và K
Chứng minh: a,
tam giác DAE cân tại A
b, HA là tia phân giác của góc IHK
Cho tam giác ABC vuông tại A. Kẻ đường cao AH, gọi M là một điểm trên cạnh BC, kẻ MI vuông góc với AB tại I, MK vuông góc với AC tại K. Chứng minh rằng: góc IHK = 90 độ
Cho tam giác ABC vuông tại A. Kẻ đường cao AH, gọi M là một điểm trên cạnh BC, kẻ MI vuông góc với AB tại I, MK vuông góc với AC tại K. Chứng minh rằng: góc IHK = 90 độ
Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
=>AIMK nội tiếp đường tròn đường kính AM và IK
=>Tâm O của đường tròn ngoại tiếp tứ giác AIMK là trung điểm chung của AM và IK
\(\widehat{AHM}=\widehat{AKM}=\widehat{AIM}=90^0\)
=>A,K,M,H,I cùng thuộc đường tròn đường kính AM
=>H thuộc (O)
Xét (O) có
ΔKHI nội tiếp
KI là đường kính
Do đó: ΔKHI vuông tại H
=>\(\widehat{KHI}=90^0\)
1, Cho tam giác ABC, góc A < 90 độ, đường cao AH, Vẽ điểm E,F sao cho AB và AC lần lượt là trung trực của HE và HF. EK cắt AB và AC lần lượt tại I và K.Chứng minh:
Tam giác AEF cânHA là phân giác góc IHKGóc BAC= góc IHBCho tam giác ABC vuông tại A có trung tuyến AM, đường cao AH. Trên tia AM lấy D sao cho AM=MD
a)CM tứ giác ABCD là hình chữ nhật
b)Gọi E,F lần lượt là chân đường vuông góc kẻ từ H đến AB và AC. CM AEHF là hình chữ nhật
c)Gọi I,K lần lượt là chân đường vuông góc kẻ từ M đến AB và AC. CM góc IHK=90 độ