Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Phượng
Xem chi tiết
Nguyễn Phan Gia Hân
Xem chi tiết
Trần Thị Sương
Xem chi tiết
phạm nghĩa
4 tháng 5 2016 lúc 21:54

Chậc ... hình như đề bài có vấn đề vì: p^2 chia 3 dư 1 (p ko chia hết cho 3 )

q^2 chia 3 dư 1

=> p^2 +q^2 ko chia hết cho 3 => ko chia hết cho 24

nguyenthithanh
30 tháng 5 2016 lúc 20:38
P=p^2-q^2=(p^2-1)-(q^2-1) Để cm P chia hết cho 24 thì cm P chia hết cho 3 và 8. Cm chia hết cho 3 đặt p=3q+r(1<=r<=2). r=1=>p=3q+1=>p-1=3q chia hết cho 3 r=2=>p=3q+2=>p+1=3q+3 chia hết cho 3. => p^2-1 chia hết cho 3. CHia hết cho 8 ta cm chia hết cho 2 và 4 giống kiểu ở trên ý bạn
hang tranlan
Xem chi tiết
nguyễn bá lương
30 tháng 7 2018 lúc 20:03

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

nguyen tuyet
29 tháng 10 2020 lúc 15:11

LEU LEU KO

Khách vãng lai đã xóa
Phác Trí Nghiên
Xem chi tiết
Đặng Minh Triều
12 tháng 9 2015 lúc 16:51

87-218=(23)7-218=221-218=217.(24-2)=217.14

Vậy 87-218 chia hết cho 14

Kinomoto Sakura
12 tháng 9 2015 lúc 16:51

Ta có: 87 - 218 = (23)7 - 218 = 221 - 218 = 218 ( 23 - 1 ) = 218. 7 = 217 . 14

=> 87 - 218 chia hết cho 14

trinh mai hoang linh
Xem chi tiết
Phạm Tuấn Đạt
13 tháng 10 2018 lúc 22:24

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2018 lúc 7:19

Đáp án C

 

Chứng minh nhận xét: Nếu a + b = 1 thì

Mai Ngọc Khánh Huyền
Xem chi tiết
Chu Vân Anh
7 tháng 1 2018 lúc 22:10

abcdeg phải chia hết cho 13 chứ bn

Đoàn Phương Linh
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 10:00

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!