Cho a là số tự nhiên có một chữ số thoả mãn:
¯¯¯¯¯¯¯¯¯¯¯¯¯¯a3,21>51,13 và ¯¯¯¯¯¯¯¯¯¯¯¯¯¯4,3a1<4,360
một số tự nhiên chia cho 17 dư 8 chia cho 25 dư 16 .Hỏi a,tìm số tự nhiên lớn nhất có 3 chữ số thoả mãn điều kiện trên.b,tìm dạng chung của các số thoả mãn đề bài
Tìm số tự nhiên a là số lớn nhất có ba chữ số thoả mãn a chia cho 20 dư 5,
chia cho 4 dư 1 và chia cho 7 dư 6.
Vì a:20 dư 5
a:4 dư 1
a:7 dư 6
\(\Rightarrow a+15⋮20,4,7\)
\(\Rightarrow a+15\in BC\left(20;4;7\right)\)
\(20=2^2\cdot5;4=2^2;7=7\)
\(\Rightarrow BCNN\left(20;4;7\right)=2^2\cdot5\cdot7=140\)
\(\Rightarrow BC\left(20;4;7\right)=B\left(140\right)=\left(0;140;280;...\right)\)
\(a+15\in\left(0;140;280;...\right)\)
Mà a là số lớn nhất có 3 chữ số \(\Rightarrow a+15=980\)
\(\Rightarrow a=965\)
Vậy a=965
Dùng ba chữ số 3, 0, 4, hãy viết các số tự nhiên có ba chữ số khác nhau và thoả mãn một trong hai điều kiện:
a) Các số đó chia hết cho 2;
b) Các số đó chia hết cho 5.
a) Các số phải có tận cùng là 0 hoặc 4
Các số chia hết cho 2: 304; 340; 430
b) Các số phải có tận cùng là 0
Các số chia hết cho 5: 340; 430
Dùng cả ba chữ số 6,0,5 hãy ghép thành các số tự nhiên có ba chữ số thoả mãn một trong các điều kiện: Số đó chia hết cho 2
Để được số chia hết cho 2 thì chữ số tận cùng của số đó phải là số chẵn. Như vậy, ta có thể có các số: 560,506,650.
Dùng cả ba chữ số 6,0,5 hãy ghép thành các số tự nhiên có ba chữ số thoả mãn một trong các điều kiện: Số đó chia hết cho 5
Để được số chia hết cho 5 thì chữ số tận cùng của số đó phải là số 0 hoặc 5. Như vậy, ta có thể có các số: 560,605,650.
Tìm số tự nhiên có một chữ số 4 thoả mãn đồng thời 2 điều kiện sau: Khi chia số đó cho 100 được số dư là 6, khi chia số đó cho 51 ta dc số dư là 17.
Cho hai số tự nhiên a và b thoả mãn a<b<5. Tìm số tự nhiên c sao cho a,b,c là ba số tự nhiên liên tiếp
tìm số tự nhiên a có hai chữ số nhỏ hơn 30 thoả mãn 273,2271,1785 đều chia cho a dư 3
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số.
B. 360 số.
C. 288 số.
D. 240 số.
Đáp án D
Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.
+) Chữ số hàng đơn vị là 2
Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N1 = 4.24 = 96 (số)
+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6
Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N2 = 2.3.24 = 144 (số)
=> Tổng số các chữ số thỏa mãn bài toán N = N1 + N2 = 96 + 144 = 240 (số).