Tìm x,y biết xy -7x +3y = 21
(x-3) . (2y+1) = 5
(2x+1) . (3y-1) = 7
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
Tìm số nguyên x, y biết
a) x.y = 28
b) (2x - 1).(2x+1) = -21
c) (x - 3).(2y +1) = 7
d) (2x + 1).(3y - 2) = -55
e) x + xy + y = 9
f) xy - 2x - 3y =5
Mong các bạn giúp đỡ
Cảm ơn nhiều. Mình sẽ LIK-E cho
a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0
Câu e: x+xy +y =9;x[y+1]+y=9 ;x[y+1]+[y+1]=10
[x+1]+[y+1]=10 nên [x+1] và [y+1] thuộc ƯC của 10 sau đó kẻ bảng ra
Bài làm của bạn Phạm Trọng Mạnh
Đảm bảo 100%
nha
tìm x ,y thuộc z biết
a (x-30).(2y+1)=7
b (2x + 1).(3y-2)=55
c xy+3x-7y=21
d xy+3x-2y=11
a) \(\left(x-30\right)\left(2y+1\right)=7=1.7=\left(-1.\right)\left(-7\right)\)
Ta xét bảng:
x-30 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 31 | 37 | 29 | 23 |
y | 3 | 0 | -4 | -1 |
c) \(xy+3x-7y=21\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=0\Leftrightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=3\end{cases}}\).
b), d) bạn làm tương tự.
Bài 1: Tìm x thuộc Z biết:
(x-3)+(x-2)+(x-1)+…+10+11=11
Bài 2: Tìm x,y thuộc Z biết:
a)(x-3)(2y+1)=7
b)(2x+1)(3y-2)= -55
c) xy+3x-7y=21
Tìm đa thức M , biết :
a) \(M-\left(\frac{1}{2}x^2y-5xy^2+x^3-y^3\right)=\frac{3}{4}xy^2-2x^2y+\)\(2y^3-\frac{1}{3}x^3\)
b)\(\left(-\frac{1}{3}x^3y^3+5x^2y^2-\frac{5}{2}xy\right)-M=xy-\frac{1}{6}x^3y^3-3x^2y^2\)
c)\(\left(\frac{2}{7}xy^4-5x^5+7x^2y^3-3\right)+M=0\)
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Bài 4: Tìm số nguyên x,y biết
1) (x-3).(2y+1)=13
2) (2x+1).(3y-2)=-33
3) xy -x - y=0
4) xy+3x-7y=21
1) x,y nguyên => x-3; 2y+1 nguyên
=> x-3; 2y+1 \(\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
ta có bảng
x-3 | -13 | -1 | 1 | 13 |
x | -10 | 2 | 4 | 16 |
2y+1 | -1 | -13 | 13 | 1 |
y | -1 | -7 | 6 | 0 |
2) làm tương tự
3) xy-x-y=0
<=> x(y-1)-(y-1)=0+1
<=> (y-1)(x-1)=1
x,y nguyên => y-1; x-1 nguyên
=> y-1; x-1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)
TH1: \(\hept{\begin{cases}y-1=-1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)
TH2: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
4) xy+3x-7y=21
<=> x(y+3)-7(y+3)=0
<=> (y+3)(x-7)=0
\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\x=7\end{cases}}}\)
1) Do: (x-3)(2y+1)=13 nên 13 chia hết cho (x-3)
=> (x-3);(2y+1) thuộc ước của 13
Ta có bảng gt sau:
x-3 1 -1 13 -13
2y+1 13 -13 1 -1
x 4 2 16 -10
y 6 -7 0 -1
NX chọn chọn chọn chọn
Vậy...
Câu 2) tương tự, bn tự làm nha.
3) xy-x-y=0
=>(xy-x)-(y-1)=1
=>x(y-1)-1(y-1)=1
=>(x-1)(y-1)=1
4)xy+3x-7y=21
=>x(y+3)-7(y+3)=0
=>(x-7)(y+3)=0
3,4 bạn làm tiếp nha mình lười gõ
tìm x y
x^3-3x^2+7x-21=2y
xy-2x-3y=5
2xy-3x+5y=8
giups minhf vs
Tìm GTNN của các biểu thức sau:
1,P=9x^2-7x+2
2,P=x^4+4(y^2+x-xy-2y+1)+6
3,P=4x(x+y+1)+y(y+2)+5
4,P=x^2+3y(3y-2x-2)+2(x+4)+3
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18