cmr tổng lập phương của 3 số tự nhiên liên tiếp luôn chia hết cho 9
CMR tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3; còn 4 số tự nhiên liên tiếp thì không chia hết cho 4
Vì là 3 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2
mà n+n+1+n+2=n+n+n+1+2=3n+3=3*(n+1) chia hết cho 3=> n+n+1+n+2 chia hết cho 3(đpcm)
Vì là 4 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2;n+3
mà n+n+1+n+2+n+3=n+n+n+n+1+2+3=4n+6
Vì 4n chia hết cho 4;6 không chia hết cho 4
=>4n+6 không chia hết cho 4=>n+n+1+n+2+n+3 không chia hết cho 4(đpcm)
Chứng minh
a, Tích hai số nguyên liên tiếp luôn chia hết cho 2
b,Tích ba số nguyên liên tiếp chia hết cho 6
c,Tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9
d,n^3+11n chia hết cho 6 với mọi n là số nguyên
e,n^5-5n^3+4n chia hết cho 120 với mọi n là số tự nhiên
trình bày cho mình luôn nha!!!!!!
CMR: Lập phương 3 số tự nhiên liên tiếp sẽ chia hết cho 9
mình chưa hiểu đề lắm
sao lại lập phương 3 số tự nhiên liên tiếp
gọi 3 số tự nhiên liên tiếp là a-1;a;a+1
ta có
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a=3a^3-3a+9a=3a\left(a^2-1\right)+9a=3\left(a-1\right)a\left(a+1\right)+9a\)
vì tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)⋮9\)
mà \(9a⋮9\)
vậy lập phương 3 số tự nhiên liên tiếp chia hết cho 9
Chứng minh rằng Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9
CMR: Tổng lập phương của 3 số liên tiếp chia hết cho 9.
Gọi 3 số đó lần lượt là a+1,a+2,a+3. Theo đề bài,ta cần chứng minh:
\(\left(a+1+a+2+a+3\right)^3⋮9\) hay \(\left(3a+6\right)^3⋮9\)
Ta có: \(\left(3a+6\right)^3=\left(3a+6\right)\left(9a^2-180a+36\right)\) (Hằng đẳng thức đáng nhớ)
\(=9\left(3a+6\right)\left(a^2-20a+4\right)⋮9^{\left(đpcm\right)}\)
Quá đơn giản!
Ba số nguyên liên tiếp là n, n + 1, n + 2 , ta phải c/m :
\(A=n^3+(n+1)^3+(n+2)^3⋮9\)
Ta có : \(A=n^3+(n+1)^3+(n+2)^3=3n^3+9n^2+15n+9\)
\(=3n^3-3n+18n+9n^2+9=3n(n-1)(n+1)+18n+9+9n^2\)
n, n - 1, n + 1 là ba số nguyên liên tiếp,trong đó có một số chia hết cho 3
Vậy : \(B=3n(n-1)(n+1)⋮9\)
\(C=18n+9n^2+9⋮9\)
=> \(A=B+C\)mà \(\hept{\begin{cases}B⋮9\\C⋮9\end{cases}}\Rightarrow A⋮9\)
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
CMR tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp chia hết cho 5
-Gọi 3 số tự nhiên liên tiếp la a;a+1;a+2
Tổng 3 số trên là:
a+(a+1)+(a+2)=(a+a+a)+(1+2)=a.3+3 chia hết cho 3
CMR:
a) Tích của 2 số chẵn liên tiếp luôn chia hết cho 8.
b) Tổng của 2 số chẵn liên tiếp không chia hết cho 4.
c) Tổng của năm số tự nhiên liên tiếp chia hết cho 5.
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
CMR: tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
Gọi 3 số tự nhiên liên tiếp là : a;a+1;a+2
Ta có: a+a+1+a+2=a+a+a+3
= a.3+3
=> tổng 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 5 số tự nhiên liên tiếp là: a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4= a.5+10
= a.5+5.2
= 5.(a+2)
=> tổng 5 số tự nhiên liên tiếp chia hết cho 5