Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Duy Bách
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 20:22

Câu hỏi của OoO Kún Chảnh OoO - Toán lớp 8 - Học toán với OnlineMath

Nguyễn tiến Mạnh
Xem chi tiết
Akai Haruma
29 tháng 6 lúc 18:48

Lời giải:

Nếu $n=3k$ với $k$ tự nhiên.

$f(x)=x^{6k}+x^{3k}+1=(x^{6k}-1)+(x^{3k}-1)+3$

$=(x^3)^{2k}-1+(x^3)^k-1+3$

$=(x^3-1)[(x^3)^{2k-1}+....+1]+(x^3-1)[(x^3)^{k-1}+...+1]+3$
$=(x-1)(x^2+x+1)[(x^3)^{2k-1}+....+1]+(x-1)(x^2+x+1)[(x^3)^{k-1}+...+1]+3$

$=(x-1)g(x)[(x^3)^{2k-1}+....+1]+(x-1)g(x)[(x^3)^{k-1}+...+1]+3$

$\Rightarrow f(x)$ chia $g(x)$ dư $3$ (loại) 

Nếu $n=3k+1$ với $k$ tự nhiên

\(f(x)=x^{2(3k+1)}+x^{3k+1}+1=x^{6k+2}+x^{3k+1}+1\\ =x^2(x^{6k}-1)+x(x^{3k}-1)+x^2+x+1\)

$=x^2[(x^3)^{2k}-1]+x[(x^3)^k-1]+x^2+x+1$

$=x^2(x^3-1)[(x^3)^{2k-1}+....+1]+x(x^3-1)[(x^3)^{k-1}+...+1]+x^2+x+1$
$=x^2(x-1)(x^2+x+1)[(x^3)^{2k-1}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{k-1}+...+1]+x^2+x+1$

$=x^2(x-1)g(x)[(x^3)^{2k-1}+....+1]+x(x-1)g(x)[(x^3)^{k-1}+...+1]+g(x)\vdots g(x)$

Nếu $n=3k+2$ với $k$ tự nhiên

\(f(x)=x^{2(3k+2)}+x^{3k+2}+1=x^{6k+4}+x^{3k+2}+1\)

\(=x^4(x^{6k}-1)+x^2(x^{3k}-1)+x^4+x^2+1\)

$=x^4(x^{6k}-1)+x^2(x^{3k}-1)+x(x^3-1)+x^2+x+1$

Có:

$x^{6k}-1=(x^3)^{2k}-1\vdots x^3-1\vdots x^2+x+1$

$x^{3k}-1=(x^3)^k-1\vdots x^3-1\vdots x^2+x+1$

$x^3-1\vdots x^2+x+1$

$x^2+x+1\vdots x^2+x+1$

$\Rightarrow f(x)\vdots x^2+x+1$ hay $f(x)\vdots g(x)$

Vậy tóm lại với $n\not\vdots 3$ thì $f(x)\vdots g(x)$

Trung Nguyen
Xem chi tiết
dam quang tuan anh
7 tháng 11 2017 lúc 22:27

Đơn giản là sét số dư của n khi chia cho 3 

+) Nếu n = 3k ( k thuộc N ) 

x^2n + x^n + 1 = x^6k + x^3k + 1 = ( x^6k - 1 ) + ( x^3k - 1 ) + 3 

x^6k - 1 , x^3k - 1 :/ x^3 - 1 :/ ( x² + x + 1 ) 

=> x^2n + x^n + 1 chia x² + x + 1 dư 2 => Vô lý 

+) n = 3k + 2 

x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) 

x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 

=> n = 3k + 2 thỏa mán đề bài 

làm tương tự trường hợp n = 3k + 1 cũng thỏa mãn đề bài 

Vậy mọi n có dạng 3k + 2 hoặc 3k + 1 đều thỏa mãn đề bài 

- - - - - - - - - 

Chú ý :/ là chia hết , x^3k - 1 luôn chia hết cho x² + x + 1

*•.¸♡ρυи๛
Xem chi tiết
Trần Thiện Nhân
18 tháng 1 2021 lúc 19:52

Xét n=3k,  n=3k+1, n=3k+2 ta có trường hợp đầu có số dư hai trường hợp sao dư bằng 0 nên n là số tự nhiên chia hết cho 3

 

 

Xem chi tiết
Hiền Nguyễn _
Xem chi tiết
Nguyễn Đình Dũng
5 tháng 9 2015 lúc 9:29

Câu 1 : 

\(\frac{5}{x+1}\)\(=1\)

\(5:\left(x+1\right)=1\)

\(x+1=5:1\)

\(x+1=5\)

\(\Rightarrow x=4\)

Nguyễn Tiến Thành Đạt
12 tháng 1 2016 lúc 20:53

a, 1

 

 

Nguyễn Thị Minh Thảo
Xem chi tiết
Nguyễn Tuệ Minh Thu
Xem chi tiết
tran nam anh
Xem chi tiết