Tìm x, y thuộc Z sao cho \(3xy+x-y=1\)
Tìm x;y thuộc Z sao cho: 3xy + x - y = 1
Tìm x, y thuộc Z sao cho x^2+xy=2015; y^2+3xy=99
Tìm x, y thuộc Z sao cho x -3xy+3y=12
Tìm x,y thuộc Z sao cho 4x^2-y^2-3xy-11x+y=13
a) Tìm x thuộc Z sao cho -7x + 11 chia hết cho -2x - 1
b) Tìm các cặp số nguyên x;y thoả mãn -3xy + 4y - 6x = 27
a, Tìm x;y thuộc Z sao cho 3xy+x+2y=0
b, Chứng minh rằng với mọi n thuộc N thì 10n+45n-1 chia hết cho 27
a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)
Tìm x; y thuộc Z sao cho \(2x^2+3xy-2y^2=7\)
\(2x^2+3xy-2y^2=7\Leftrightarrow2x^2+3xy+\left(-2y^2-7\right)=0\)
\(\Delta=9y^2-8\left(-2y^2-7\right)=25y^2+56>0\)=> luôn có hai nghiệm phân biệt
Để pt có nghiệm nguyên thì \(25y^2+56=k^2\Leftrightarrow\left(k-5y\right)\left(k+5y\right)=56\)
Xét các trường hợp được \(\left(k;y\right)=\left(\pm9;\pm1\right)\)
Với y = 1 được x = -3 (nhận) hoặc x = 3/2 (loại)
Với y = -1 được x = 3 (nhận) hoặc x = -3/2 (loại)
Vậy (x;y) = (-3;1) ; (3;-1)
Tìm x,y thuộc Z biết:
3xy+x-y=9.Các bạn giải chi tiết cho mik nha.Cảm ơn!
Lời giải:
$3xy+x-y=9$
$x(3y+1)-y=9$
$3x(3y+1)-3y=27$
$3x(3y+1)-(3y+1)=26$
$(3x-1)(3y+1)=26$. Do $3x-1, 3y+1$ đều là số nguyên với mọi $x,y$ nguyên nên ta có bảng sau:
3x-1 | 1 | 26 | -1 | -26 | 2 | 13 | -2 | -13 |
3y+1 | 26 | 1 | -26 | -1 | 13 | 2 | -13 | -2 |
x | 2/3 | 9 | 0 | -25/3 | 1 | 14/3 | -1/3 | -4 |
y | 25/3 | 0 | -9 | -2/3 | 4 | 1/3 | -14/3 | -1 |
Kết luận | loại | chọn | chọn | loại | chọn | loại | loại | chọn |
tìm x, y thuộc Z : 5(x+y)+2=3xy