Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Hân
Xem chi tiết
Lightning Farron
17 tháng 9 2016 lúc 11:03

a)\(\left|x-\frac{1}{3}\right|=a\)

\(\Rightarrow x-\frac{1}{3}=\pm a\)

Nếu \(x-\frac{1}{3}=a\)

\(\Rightarrow x=a+\frac{1}{3}\)

Nếu \(x-\frac{1}{3}=-a\)

\(\Rightarrow x=-a+\frac{1}{3}\)

Vậy nghiệm đc xác định dưới dạng hàm ẩn \(x=a+\frac{1}{3}\) và \(x=-a+\frac{1}{3}\)

Lightning Farron
17 tháng 9 2016 lúc 11:08

b)-|2x+5|=-a

Chia 2 vế cho (-1) 

pt<=>|2x+5|=a

<=>2x+5=±a

Nếu 2x+5=a

<=>2x=a-5

<=>x=\(\frac{a-5}{x}\left(a\in Q\right)\)

Nếu 2x+5=-a

<=>2x=-a-5

<=>x=\(\frac{-a-5}{2x}\left(a\in Q\right)\)

Vậy....

Song Joong Ki
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
Yen Nhi
12 tháng 9 2021 lúc 12:58

\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thảo Hân
Xem chi tiết
Tinh Linh
24 tháng 6 2016 lúc 19:12

a) Ta có: \(\left|x-1,5\right|+\left|2,5-x\right|=0\)

   mà \(\left|x-1,5\right|+\left|2,5-x\right|\ge\left|x-1,5+2,5-x\right|=1\)

nên ko tồn tại x 

b) \(\left|x-2\right|+\left|y+\frac{1}{2}\right|=0\)

\(\Leftrightarrow\begin{cases}\left|x-2\right|=0\\\left|y+\frac{1}{2}\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-2=0\\y+\frac{1}{2}=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}\)

Duong Thi Nhuong TH Hoa...
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
Xyz OLM
12 tháng 9 2021 lúc 14:24

Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20 

Khách vãng lai đã xóa
Yen Nhi
12 tháng 9 2021 lúc 14:34

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

Ta có: \(\left|x-\frac{3}{4}\right|;\left|\frac{2}{5}-y\right|;\left|x-y+z\right|\ge0\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Mà \(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\Rightarrow z=\frac{-7}{20}\end{cases}}\)

Khách vãng lai đã xóa
An Nguyễn
Xem chi tiết
Nguyên A
15 tháng 10 2016 lúc 18:57

a) Để A thuộc Z => \(\sqrt{x}\)- 3thuộc ước của 2 => \(\sqrt{x}\)- 3 thuộc -1; -2;1;2

=> căn x = 1 hoặc 2

câu b làm tương tự

pham hoang mai huong
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
Con Chim 7 Màu
16 tháng 4 2019 lúc 10:46

2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)

        \(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)

          \(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)

           \(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân vế với vế của 3 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)

Áp dụng BĐT \(\left(1\right)\)ta được:

\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)

\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)

\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)