1/11x16+ 1/16x21+ 1/21x26+...+X x ( x+5 ) = 1/660
Tính:
1, A = 1/1x3 + 1/3x5 + 1/5x7 + ... + 1/2019 x 2021
2, B= 4/11x16 + 4/16x21 + 4/21x26 + ... + 4/61x66
Bài 1:
A = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) +...+ \(\dfrac{1}{2019\times2021}\)
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\)+...+ \(\dfrac{2}{2019\times2021}\))
A = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+...+ \(\dfrac{1}{2019}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1010}{2021}\)
Bài 2:
B = \(\dfrac{4}{11\times16}\) + \(\dfrac{4}{16\times21}\)+ \(\dfrac{4}{21\times26}\)+...+ \(\dfrac{4}{61\times66}\)
B = \(\dfrac{4}{5}\) \(\times\) ( \(\dfrac{5}{11\times16}\)+ \(\dfrac{5}{16\times21}\) + \(\dfrac{5}{21\times26}\)+...+ \(\dfrac{5}{61\times66}\))
B = \(\dfrac{4}{5}\) \(\times\) ( \(\dfrac{1}{11}\) - \(\dfrac{1}{16}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{21}\) + \(\dfrac{1}{21}\) - \(\dfrac{1}{26}\)+...+ \(\dfrac{1}{61}\) - \(\dfrac{1}{66}\))
B = \(\dfrac{4}{5}\) \(\times\)( \(\dfrac{1}{11}\) - \(\dfrac{1}{66}\))
B = \(\dfrac{4}{5}\) \(\times\) \(\dfrac{5}{66}\)
B = \(\dfrac{2}{33}\)
Bài 2 :
E = \(\frac{1}{11x16}+\frac{1}{16x21}+\frac{1}{21x26}+...+\frac{1}{61x66}\)
E=\(\frac{1}{5}\).(\(\frac{1}{11}-\frac{1}{16}\)+\(\frac{1}{16}-\frac{1}{21}+\frac{1}{21}+\frac{1}{26}+....+\frac{1}{61}-\frac{1}{66}\))
E=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)=\(\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)
\(E=\frac{1}{11x16}+\frac{1}{16x21}+\frac{1}{21x26}+...+\frac{1}{61x66}\)
\(E=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}+\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(E=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(E=\frac{1}{5}.\frac{5}{66}\)
\(E=\frac{1}{66}\)
Tính nhanh
\(C=\frac{1}{11X16}+\frac{1}{16x21}+\frac{1}{21x26}+...\frac{1}{56x61}+\frac{1}{61x66}\)
\(C=\frac{1}{11\cdot16}+\frac{1}{16\cdot21}+...+\frac{1}{61\cdot66}=\frac{5}{5}\cdot\left(\frac{1}{11\cdot16}+\frac{1}{16\cdot21}+...+\frac{1}{61\cdot66}\right)\)
\(=\frac{1}{5}\cdot\left(\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+...+\frac{5}{61\cdot66}\right)=\frac{1}{5}\cdot\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\cdot\left[\left(\frac{1}{11}-\frac{1}{66}\right)+\left(\frac{1}{16}-\frac{1}{16}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right]\)
\(=\frac{1}{5}\cdot\left[\left(\frac{6}{66}-\frac{1}{66}\right)+0+...+0\right]=\frac{1}{5}\cdot\frac{5}{66}=\frac{1\cdot5}{5\cdot66}=\frac{1\cdot1}{1\cdot66}=\frac{1}{66}\)
Vậy \(C=\frac{1}{66}\)
Chúc bạn học tốt!^_^
5^2/1x6+5^2/6x11+5^2/11x16+5^2/16x21+5^2/21x26
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(=5^2\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}\right)\)
\(=25.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right)\)
\(=5\left(1-\frac{1}{26}\right)\)
\(=5.\frac{25}{26}\)
\(=\frac{125}{26}\)
5^2/1x6+5^2/6x11+5^2/11x16+5^2/16x21+5^2/21x26
s= 5^2 / 1x 6+ 5^2 / 6x11 +5^2/11x16+5^2/16x21+5^2/ 21x26
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(5S=5^2\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}\right)\)
\(5S=5^2\left(1-\frac{1}{26}\right)\)
\(\Rightarrow S=5^2:5\left(1-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
3/11x16 + 3/16x21 + 3/21x26 +...+3/61x66
A = 3/11x16 + 3/16x21 + 3/21x26 +...+3/61x66
A : 3 . 5 = 5/11x16 + 5/16x21 + 5/21x26 +...+5/61x66
A : 3 . 5 = 1/11 - 1/16 + 1/16 - 1/21 + ......+ 1/61 - 1/66
A : 3 . 5 = 1/11 - 1/66
A : 3 . 5 = 5/66
A = 5/66 . 3 : 5
A = 5/22 : 5
A = 1/22
Chúc bạn hoc tốt
C= 55/6x11 + 55/11x16 + 55/16x21 55/21x26 55/ 26x31
\(=11\left(\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+\dfrac{5}{21\cdot26}+\dfrac{5}{26\cdot31}\right)\)
=11(1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)
=11*25/186=275/186
C= 55/6x11 + 55/11x16 + 55/16x21 55/21x26 55/ 26x31
\(\dfrac{55}{6x11}+\dfrac{55}{11x16}+\dfrac{55}{21x16}+\dfrac{55}{21x26}+\dfrac{55}{31x26}\)
\(=55\left(\dfrac{1}{6x11}+\dfrac{1}{11x16}+\dfrac{1}{21x16}+\dfrac{1}{21x26}+\dfrac{1}{31x26}\right)\)
\(=55\left(\dfrac{1}{5}x\left(\dfrac{1}{6}-\dfrac{1}{11}\right)+\dfrac{1}{5}x\left(\dfrac{1}{11}-\dfrac{1}{16}\right)+\dfrac{1}{5}x\left(\dfrac{1}{16}-\dfrac{1}{21}\right)+\dfrac{1}{5}x\left(\dfrac{1}{21}-\dfrac{1}{26}\right)+\dfrac{1}{5}x\left(\dfrac{1}{26}-\dfrac{1}{31}\right)\right)\)
\(=55x\dfrac{1}{5}x\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=11x\left(\dfrac{1}{6}-\dfrac{1}{31}\right)=11x\left(\dfrac{31-6}{186}\right)=11x\dfrac{25}{186}=\dfrac{275}{186}\)
C=\(\dfrac{55}{6\cdot11}\)+\(\dfrac{55}{11\cdot16}\)+\(\dfrac{55}{16\cdot21}\)+\(\dfrac{55}{21\cdot26}\)+\(\dfrac{55}{26\cdot31}\)
=\(\dfrac{1}{6}\)-\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{16}\)+\(\dfrac{1}{16}\)-\(\dfrac{1}{21}\)+\(\dfrac{1}{21}\)-\(\dfrac{1}{26}\)+\(\dfrac{1}{26}\)-\(\dfrac{1}{31}\)
=\(\dfrac{1}{6}\)-\(\dfrac{1}{31}\)=\(\dfrac{25}{186}\)
\(C=\dfrac{55}{6\times11}+\dfrac{55}{11\times16}+\dfrac{55}{16\times21}+\dfrac{55}{21\times26}+\dfrac{55}{26\times31}\)
\(\dfrac{1}{11}C=\dfrac{5}{6\times11}+\dfrac{5}{11\times16}+\dfrac{5}{16\times21}+\dfrac{5}{21\times26}+\dfrac{5}{26\times31}\)
\(\dfrac{1}{11}C=\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{11}C=\dfrac{1}{6}-\dfrac{1}{31}=\dfrac{25}{186}\)
\(C=\dfrac{25}{186}:\dfrac{1}{11}=\dfrac{275}{186}\)