tinh tong S =1 + 3 + 6 + 10 +...+495
Cho S = 1 + 3^2 + 3^4 + 3^6 + ... + 3^98. Tinh tong S va chung minh S chia het cho 10
Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)
\(=\left(S-1\right)+3^{100}\)
\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)
Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
Cho S=1+32+34+36+..................+398
tinh tong cua S va cmr S chia het cho 10
a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949
9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)
b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:
S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)
Vậy S chia hết cho 10
bai1:tinh tong S=1.3+3.5+5.7+...+99.101
bai2 :tinh tong S=1.4+4.7+7.10+...+2017.2020
bai 3: tinh tong N=2.4+4.6+6.8+..+100.102
bai 4: tinh tóng=2.6+6.10+10.14+14.18+...+42.46+50.54
bai 5:tinh tongB=2^2+4^2+6^2+...+100^2
bai 6:C=1^2+3^2+...+100^2
bai7: biet 1^2+2^2+3^2+...+10^2=385 tinh tong 2^2+4^2+6^2+...+20^2
bai 8: tinh tong s=1^2+2^2+3^2+...+99^2
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
nhanh len nhé mik đang cần gấp ai lam trước mik tích cho
Bài 6 :
\(C=1^2+2^2+...+100^2=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}=\dfrac{100.101.201}{6}=338350\)
Bài 9 :
\(S=1^2+2^2+3^2+...+99^2=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}=\dfrac{99.100.199}{6}=328350\)
cho S= 1+3 mux2 +3 mũ 4 +3 mũ 6+.........+ 3 mũ 98. tinh tong Svà chứng minh Schia het cho 10
tinh tong s=1/2^2+1/3^2+...+ 1/10^2
tinh tong S=1+2^2+3^3=...+10^10 bang cach su dung cau len lap For...do
uses crt;
var i,j:integer;
s:real;
{----------chuong-trinh-con---------------}
function luythua(x,y:integer):real;
var lt:real;
i:integer;
begin
lt:=1;
for i:=1 to y do
lt:=lt*x;
luythua:=lt;
end;
{---------------chuong-trinh-chinh---------------------}
s:=0;
for i:=1 to 10 do
for j:=1 to 10 do
if i=j then s:=s+luythua(i,j);
writeln(s:0:0);
readln;
end.
tinh tong:
1/3+1/6+1/10+1/15+....+1/44
Lời giải:
** Sửa đề $\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}$
Đặt tổng trên là $A$
$A=\frac{1}{2}(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90})$
$=\frac{1}{2}(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{9.10})$
$=\frac{1}{2}(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10})$
$=\frac{1}{2}(\frac{1}{2}-\frac{1}{10})=\frac{1}{5}$
tinh tong cac so sau D=30+35+...+495+500
tinh tong :S=1-2+3-4+5-6+...+2015-2016
S= 1-2 + 3-4 + 5-6+... ..+2015-2016(có 2016 số)
=(1-2) + (3-4) + (5-6) +...+(2015-2016) (có 2016:2=1008 nhóm có 2 số)
=-1 +(-1) +(-1) +...+(-1)( có 1008 số(-1))
=-1.1008
=-1008
vậy S=-1008