giải phương trình: \(\sqrt{\frac{^{x^2}}{4}}+\sqrt{x^2-4}\) =\(8-x^2\)
Giải phương trình:
\(\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}=8-x^2\)
Bạn có ghi đề đúng ko ?Nếu nhầm thì tham khảo tại link sau : http://olm.vn/hoi-dap/question/695523.html
Sửa đề : \(\sqrt{\frac{x^2}{4}}+\sqrt{x^2-4}=8-x^2\)
Câu hỏi của Đặng Đức Bách - Toán lớp 9 - Học toán với OnlineMath
Giải phương trình
\(\sqrt[4]{(x-1)^2} - \sqrt[4]{(x+1)^2} = \frac{3}{2} \sqrt[4]{x^2 -1}\)
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
GIẢI PHƯƠNG TRÌNH (giải giùm vs ^^)
\(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}\)
\(\left(x+2\right)\left(x+4\right)+5\left(x+2\right)\sqrt{\frac{x+4}{x+2}}=6\)
\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{2}}=5\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
giải các phương trình:
a)\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b)\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
c)\(\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
Bạn gần như trùng tên với mình đấy.Ket ban voi minh nha.
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
b) ĐK: \(x\ge-1\)
Áp dụng BĐT Cô-si cho 4 số: 4,4,4,x+1 ta được:
\(4+4+4+\left(x+1\right)\ge4\sqrt[4]{4.4.4\left(x+1\right)}=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow13+x\ge8\sqrt[4]{4x+4}\)
Từ pt ta có được: \(13+x\ge x^3-3x^2-8x+40\Leftrightarrow\left(x-3\right)^2\left(x+3\right)\le0\)
Do \(x+1\ge0\Rightarrow x+3>0\)nên \(\left(x-3\right)^2\le0\Leftrightarrow x=3\)
Vậy với x=3 thoả mãn pt
Vậy x=3 là nghiệm của pt.
Giải hệ phương trình
\(\hept{\begin{cases}16x^4-24x^2+8\sqrt{3-2y}=3\\\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\end{cases}}\)
Giải phương trình c) \(\frac{5\sqrt{x-2}}{8\sqrt{x-2,5}}=\frac{2}{7}\) d) \(\sqrt{\left(9x\right)^2}+12x+4=4\)