Cho x,y thỏa mãn: (x+3y-6)^2006 +l 2x-y-5 l=0.Khi đó x+y=
cho x,y thỏa mãn:(x+3y-6)^{2006}+|2x-y-5|=0. khi đó x+y=?
Vì \(\hept{\begin{cases}\left(x+3y-6\right)^{2006}\ge0\\\left|2x-y-5\right|\ge0\end{cases}\Leftrightarrow\left(x+3y-6\right)^{2006}+\left|2x-y-5\right|\ge0}\)
Theo đề bài:
\(\left(x+3y-6\right)^{2006}+\left|2x-y-5\right|=0\Leftrightarrow\left(x+3y-6\right)^{2006}=\left|2x-y-5\right|=0\)
\(\Leftrightarrow x+3y-6=2x-y-5=0\)
Giải cái bên trên ra bạn sẽ được x=3 và y=1 => x+y=3+1=4
Vậy ...
bạn giải thích giúp mình chỗ tính ra x=3; y=1 với ạ. mình k hiểu chỗ đó hic
Cho x,y thõa mãn :
(x+3y-6)2006 + |2x-y-5|=0
Khi đó : x+y=?
Cho thỏa mãn: .Khi đó
Ta có :
\(\begin{cases}\left(x+3y-6\right)^{2006}\ge0\\\left|2x-y-5\right|\ge0\end{cases}\)
\(\Rightarrow\begin{cases}x+3y-6=0\\2x-y-5=0\end{cases}\)
\(\Rightarrow\begin{cases}x=6-3y\\2x=y+5\end{cases}\)
\(\Rightarrow\begin{cases}2x=12-6y\\2x=y+5\end{cases}\)
\(\Rightarrow12-6y=y+5\)
\(\Rightarrow y=1\)
\(\Rightarrow x=6\)
-> x + y = 7
cho x,y thỏa mãn (x+3y-6)2016+l2x-y-5l=0 khi đó x+y=?
Cho hai số x;y thỏa mãn : 2x+1/5=3y-2/7=2x+3y-1/6x
Khi đó x;y = ?
Cho x,y thõa mãn \(\left(x+3y-6\right)^{2004}+\left|2x-y-5\right|=0\).Khi đó x+y..
\(\left(x+3y-6\right)^{2004}+\left|2x-y-5\right|=0\)
\(\Rightarrow\begin{cases}x+3y-6=0\Rightarrow x=6-3y\Rightarrow2x=12-6y\\2x-y-5=0\Rightarrow2x=y+5\end{cases}\)
\(\Rightarrow12-6y=y+5\Rightarrow y=1\Rightarrow x=3\Rightarrow x+y=1+3=4\)
Chúc bạn học tốt :)
giúp bài cuối sáng nay
2x - y-5 = 0 => x =(y+5)/2 (1)
x + 3y -6 = 0 => thay (1) có: y = 1
thay y=1 vào (1) có x = 3
vây x+y = 1+3 = 4
Cho 2 số x;y thỏa mãn:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\). Khi đó x+y=......
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 vào \(\frac{2x+1}{5}\), ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5
KL: x + y = 5
Cho hai số x;y thỏa mãn \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}\)
Khi đó x + y = ...
Lưu ý : kết quả là một số nguyên
cho x,y>0 thỏa mãn 4/x^2 + 5/y^2 >= 9
tìm gtnn của biểu thức 2x^2 + 6/x^2 + 3y^2 + 8/y^2
Không biết đúng k nữa:
\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge2\cdot2+3\cdot2+9=19\)
Vậy Min=19 khi x=y=1