CMR . Với n là số dương thì 3^2n+2 - 9 .4^n+4.9^n-2^2n+2 chia hết 13
chứng minh rằng : với n là số nguyên dương thì 3^2n+2 - 9.4^n+4.9^n-2^2n+2 chia hết cho 13 help me pls !
3^2n+2-9.4^n+4.9^n-2^2n+2 chia hết cho 13
CMR với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2^n
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
CMR: Với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2n
với n = 1 có : ( 1 + 1 ) chia hết cho 2
giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k
cần chứng minh đúng với n = k + 1
tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1
Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )
= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1
vậy ta có đpcm
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
CMR nếu n là số nguyên dương không chia hết cho 3 thì A=32n+3n+1 chia hết cho 13
CMR: Với mọi số nguyên dương n thì :
a)A=3n+3+3n+1+2n+2+2n+1 chia hết cho 6
b)B=3n+3-2n+3+3n+2-2n+1 chia hết cho 10
(nghiêm cấm hành vi làm đc câu 1 câu 2 viết tương tự xin cảm ơn)
1.Tìm số dư khi chia 9^10^11 - 5^9^10 cho 13
2. cmr số A = 2^2^2n+1 +3 là hợp số với mọi số nguyên dương n