cho hình vuông ABCD . qua M thuộc đường chéo AC kẻ ME vuông góc với AD ; MF vuông góc với CD . chứng minh :
a/ BE vuông góc với AF
b/ BM vuông góc với EF
c/ BM ; AF ; CE đồng quy
cho hình vuông ABCD . qua M thuộc đường chéo AC kẻ ME vuông góc với AD ; MF vuông góc với CD. chứng minh :
a/ BE vuông góc với AF
b/ BM vuông góc với EF
c/ BM;À;CE đồng quy
cho hình vuông abcd. điểm m thuộc đường chéo bd. kẻ me vuông góc với ab. mf vuông góc với ad. chứng minh ef =mc
Cho hình vuông ABCD từ điểm M thuộc đường chéo BD kẻ ME vuông góc với AB và MF vuông góc với AD . chứng minh
a, DE=CF và DE vuông góc CF
b, CM =EF và CM vuông góc EF
a) Ta có: ABCD là hình vuông
nên DB là tia phân giác của \(\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)
hay \(\widehat{FDM}=45^0\)
Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)
nên ΔMFD vuông cân tại F
Suy ra: FM=FD(1)
Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)
\(\widehat{AFM}=90^0\)
\(\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AE=MF(2)
Từ (1) và (2) suy ra AE=DF
Xét ΔAED vuông tại A và ΔDFC vuông tại F có
AE=DF
AD=DC
Do đó: ΔAED=ΔDFC
Suy ra: DE=CF
a, AEMF là hình chữ nhật nên AE=FM
ΔDFM vuông cân tại F suy ra FM=DF
⇒AE=DFsuy ra ΔADE=ΔDCF
⇒DE=CF
b, Tương tự câu a, dễ thấy AF=BE
⇒ΔABF=ΔBCE
⇒ABF^=BCE^ nên BF vuông góc CE
Gọi H là giao điểm của BFvà DE
⇒H là trực tâm của tam giác CEF
Gọi N là giao điểm của BCvà MF
CN=DF=AEvà MN=EM=AF
ΔAEF=ΔCMN
⇒ˆAEF=ˆMCN
⇒CM⊥EF
Cho hình vuông ABCD
Lấy M nằm bất kỳ trên đường chéo BD
Từ M, kẻ ME vuông góc với AB (E thuộc AB)
kẻ MF vuông góc với AD (F thuộc AD)
CMR: BF, DE, CM là đường đồng quy.
Bài 1 : Cho hình vuông ABCD có E ,F là TĐ AB ,AC
a) CM: CE vuông với DF
b) Gọi DF cắt CE tại M . CM AM = AB
Bài 2:Cho hình vuông ABCD . Qua M thuộc đường chéo AC , Kẻ ME vuông với AD ; MF vuông CD . CMR:
a) BE vuông với AF
b) BM vuông với EF
c) BM , AF , CE đồng quy
Cho hình vuông ABCD có O là giao điểm của hai đường chéo AC và BD. Trên cạnch AB lấy điểm M (M khác A, B). kẻ ME vuông góc với AC tại E, ME cắt AD tại F. Kẻ MP vuông góc với BD tại P, MP cắt BC tại Q.
a) Tứ giác MEOP là hình gì? Tại sao? b) Chứng minh tứ giác MFDB là hình thang cân.
c) Chứng minh Om là trung điểm của FQ. d) Tìm vị trí của M trên AB để độ dài EP nhỏ nhất.
Cho hình vuông ABCD từ điểm M thuộc đường chéo BD kẻ ME vuông góc với AB và MF vuông góc với AD . chứng minh
a, DE=CF và DE vuông góc CF
b, CM =EF và CM vuông góc EF
GIẢI GIÚP EM VS Ạ EM CẢM ƠN
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. gọi M và N lần lượt là trung điểm của AB và AD. Kẻ ME vuông góc với CD tại E, NF vuông góc với BC tại F. chứng minh M,N,E,F cùng thuộc một đường tròn.